{"title":"恒星平衡与引力坍缩","authors":"Carla Rodrigues Almeida","doi":"10.1140/epjh/e2019-100045-x","DOIUrl":null,"url":null,"abstract":"<p>\nThe idea of gravitational collapse can be traced back to the first solution of Einstein’s equations, but in these early stages, compelling evidence to support this idea was lacking. Furthermore, there were many theoretical gaps underlying the conviction that a star could not contract beyond its critical radius. The philosophical views of the early 20th century, especially those of Sir Arthur S. Eddington, imposed equilibrium as an almost unquestionable condition on theoretical models describing stars. This paper is a historical and epistemological account of the theoretical defiance of this equilibrium hypothesis, with a novel reassessment of J.R. Oppenheimer’s work on astrophysics.\n</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"45 1","pages":"25 - 48"},"PeriodicalIF":0.8000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjh/e2019-100045-x","citationCount":"1","resultStr":"{\"title\":\"Stellar equilibrium vs. gravitational collapse\",\"authors\":\"Carla Rodrigues Almeida\",\"doi\":\"10.1140/epjh/e2019-100045-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nThe idea of gravitational collapse can be traced back to the first solution of Einstein’s equations, but in these early stages, compelling evidence to support this idea was lacking. Furthermore, there were many theoretical gaps underlying the conviction that a star could not contract beyond its critical radius. The philosophical views of the early 20th century, especially those of Sir Arthur S. Eddington, imposed equilibrium as an almost unquestionable condition on theoretical models describing stars. This paper is a historical and epistemological account of the theoretical defiance of this equilibrium hypothesis, with a novel reassessment of J.R. Oppenheimer’s work on astrophysics.\\n</p>\",\"PeriodicalId\":791,\"journal\":{\"name\":\"The European Physical Journal H\",\"volume\":\"45 1\",\"pages\":\"25 - 48\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1140/epjh/e2019-100045-x\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal H\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjh/e2019-100045-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/e2019-100045-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
The idea of gravitational collapse can be traced back to the first solution of Einstein’s equations, but in these early stages, compelling evidence to support this idea was lacking. Furthermore, there were many theoretical gaps underlying the conviction that a star could not contract beyond its critical radius. The philosophical views of the early 20th century, especially those of Sir Arthur S. Eddington, imposed equilibrium as an almost unquestionable condition on theoretical models describing stars. This paper is a historical and epistemological account of the theoretical defiance of this equilibrium hypothesis, with a novel reassessment of J.R. Oppenheimer’s work on astrophysics.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.