{"title":"通过局部范围的标量曲率","authors":"G. Veronelli","doi":"10.1515/agms-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract We give a metric characterization of the scalar curvature of a smooth Riemannian manifold, analyzing the maximal distance between (n + 1) points in infinitesimally small neighborhoods of a point. Since this characterization is purely in terms of the distance function, it could be used to approach the problem of defining the scalar curvature on a non-smooth metric space. In the second part we will discuss this issue, focusing in particular on Alexandrov spaces and surfaces with bounded integral curvature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2018-0008","citationCount":"4","resultStr":"{\"title\":\"Scalar Curvature via Local Extent\",\"authors\":\"G. Veronelli\",\"doi\":\"10.1515/agms-2018-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We give a metric characterization of the scalar curvature of a smooth Riemannian manifold, analyzing the maximal distance between (n + 1) points in infinitesimally small neighborhoods of a point. Since this characterization is purely in terms of the distance function, it could be used to approach the problem of defining the scalar curvature on a non-smooth metric space. In the second part we will discuss this issue, focusing in particular on Alexandrov spaces and surfaces with bounded integral curvature.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2018-0008\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2018-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract We give a metric characterization of the scalar curvature of a smooth Riemannian manifold, analyzing the maximal distance between (n + 1) points in infinitesimally small neighborhoods of a point. Since this characterization is purely in terms of the distance function, it could be used to approach the problem of defining the scalar curvature on a non-smooth metric space. In the second part we will discuss this issue, focusing in particular on Alexandrov spaces and surfaces with bounded integral curvature.