一种用于法律案件文件口头禅识别的序列标记模型

IF 3.1 2区 社会学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence and Law Pub Date : 2021-07-30 DOI:10.1007/s10506-021-09296-2
Arpan Mandal, Kripabandhu Ghosh, Saptarshi Ghosh, Sekhar Mandal
{"title":"一种用于法律案件文件口头禅识别的序列标记模型","authors":"Arpan Mandal,&nbsp;Kripabandhu Ghosh,&nbsp;Saptarshi Ghosh,&nbsp;Sekhar Mandal","doi":"10.1007/s10506-021-09296-2","DOIUrl":null,"url":null,"abstract":"<div><p>In a Common Law system, legal practitioners need frequent access to prior case documents that discuss relevant legal issues. Case documents are generally very lengthy, containing complex sentence structures, and reading them fully is a strenuous task even for legal practitioners. Having a concise overview of these documents can relieve legal practitioners from the task of reading the complete case statements. Legal catchphrases are (multi-word) phrases that provide a concise overview of the contents of a case document, and automated generation of catchphrases is a challenging problem in legal analytics. In this paper, we propose a novel supervised neural sequence tagging model for the extraction of catchphrases from legal case documents. Specifically, we show that incorporating document-specific information along with a sequence tagging model can enhance the performance of catchphrase extraction. We perform experiments over a set of Indian Supreme Court case documents, for which the gold-standard catchphrases (annotated by legal practitioners) are obtained from a popular legal information system. The performance of our proposed method is compared with that of several existing supervised and unsupervised methods, and our proposed method is empirically shown to be superior to all baselines.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"30 3","pages":"325 - 358"},"PeriodicalIF":3.1000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10506-021-09296-2","citationCount":"5","resultStr":"{\"title\":\"A sequence labeling model for catchphrase identification from legal case documents\",\"authors\":\"Arpan Mandal,&nbsp;Kripabandhu Ghosh,&nbsp;Saptarshi Ghosh,&nbsp;Sekhar Mandal\",\"doi\":\"10.1007/s10506-021-09296-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a Common Law system, legal practitioners need frequent access to prior case documents that discuss relevant legal issues. Case documents are generally very lengthy, containing complex sentence structures, and reading them fully is a strenuous task even for legal practitioners. Having a concise overview of these documents can relieve legal practitioners from the task of reading the complete case statements. Legal catchphrases are (multi-word) phrases that provide a concise overview of the contents of a case document, and automated generation of catchphrases is a challenging problem in legal analytics. In this paper, we propose a novel supervised neural sequence tagging model for the extraction of catchphrases from legal case documents. Specifically, we show that incorporating document-specific information along with a sequence tagging model can enhance the performance of catchphrase extraction. We perform experiments over a set of Indian Supreme Court case documents, for which the gold-standard catchphrases (annotated by legal practitioners) are obtained from a popular legal information system. The performance of our proposed method is compared with that of several existing supervised and unsupervised methods, and our proposed method is empirically shown to be superior to all baselines.</p></div>\",\"PeriodicalId\":51336,\"journal\":{\"name\":\"Artificial Intelligence and Law\",\"volume\":\"30 3\",\"pages\":\"325 - 358\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10506-021-09296-2\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Law\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10506-021-09296-2\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-021-09296-2","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

摘要

在普通法体系中,法律从业者需要经常查阅之前讨论相关法律问题的案件文件。案件文件通常很长,包含复杂的句子结构,即使对法律从业者来说,完整阅读也是一项艰巨的任务。对这些文件有一个简明的概述可以免除法律从业者阅读完整案件陈述的任务。法律流行语是对案件文件内容进行简要概述的(多词)短语,而流行语的自动生成在法律分析中是一个具有挑战性的问题。在本文中,我们提出了一种新的监督神经序列标记模型,用于从法律案件文件中提取流行语。具体来说,我们表明,将文档特定信息与序列标记模型结合起来可以提高流行语提取的性能。我们对一组印度最高法院的案例文件进行了实验,其中的金标准流行语(由法律从业者注释)是从流行的法律信息系统中获得的。将我们提出的方法的性能与现有的几种有监督和无监督方法的性能进行了比较,经验表明,我们提出的算法优于所有基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A sequence labeling model for catchphrase identification from legal case documents

In a Common Law system, legal practitioners need frequent access to prior case documents that discuss relevant legal issues. Case documents are generally very lengthy, containing complex sentence structures, and reading them fully is a strenuous task even for legal practitioners. Having a concise overview of these documents can relieve legal practitioners from the task of reading the complete case statements. Legal catchphrases are (multi-word) phrases that provide a concise overview of the contents of a case document, and automated generation of catchphrases is a challenging problem in legal analytics. In this paper, we propose a novel supervised neural sequence tagging model for the extraction of catchphrases from legal case documents. Specifically, we show that incorporating document-specific information along with a sequence tagging model can enhance the performance of catchphrase extraction. We perform experiments over a set of Indian Supreme Court case documents, for which the gold-standard catchphrases (annotated by legal practitioners) are obtained from a popular legal information system. The performance of our proposed method is compared with that of several existing supervised and unsupervised methods, and our proposed method is empirically shown to be superior to all baselines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
26.80%
发文量
33
期刊介绍: Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law. Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.
期刊最新文献
DiscoLQA: zero-shot discourse-based legal question answering on European Legislation A neural network to identify requests, decisions, and arguments in court rulings on custody Cytomorphological traits of fine-needle aspirates of hyalinizing trabecular tumor of the thyroid gland: A brief report. Automating petition classification in Brazil’s legal system: a two-step deep learning approach Reasoning with inconsistent precedents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1