Niels C. Munksgaard, Ickjai Lee, Thomas Napier, Costijn Zwart, Lucas A. Cernusak, Michael I. Bird
{"title":"在澳大利亚Savanna现场对大气中的CO2、CH4、H2O和δ13C-CO2进行一年的光谱高频测量","authors":"Niels C. Munksgaard, Ickjai Lee, Thomas Napier, Costijn Zwart, Lucas A. Cernusak, Michael I. Bird","doi":"10.1002/gdj3.180","DOIUrl":null,"url":null,"abstract":"<p>We provide a 1-year dataset of atmospheric surface CO<sub>2</sub>, CH<sub>4</sub> and H<sub>2</sub>O concentrations and δ<sup>13</sup>C-CO<sub>2</sub> values from an Australian savanna site. These semi-arid ecosystems act as carbon sinks in wet years but the persistence of the sink in dry years is uncertain. The dataset can be used to constrain uncertainties in modelling of greenhouse gas budgets, improve algorithms for satellite measurements and characterize the role of vegetation and soil in modulating atmospheric CO<sub>2</sub> concentrations. We found pronounced seasonal variations in daily mean CO<sub>2</sub> concentrations with an increase (by 5–7 ppmv) after the first rainfall of the wet season in early December with peak concentrations maintained until late January. The CO<sub>2</sub> increase reflected the initiation of rapid microbial respiration from soil and vegetation sources upon initial wetting. As the wet season progressed, daily CO<sub>2</sub> concentrations were variable, but generally decreased back to dry season levels as CO<sub>2</sub> assimilation by photosynthesis increased. Mean daily concentrations of CH<sub>4</sub> increased in the wet season by up to 0.2 ppmv relative to dry season levels as the soil profile became waterlogged after heavy rainfall events. During the dry season there was regular cycling between maximum CO<sub>2</sub>/minimum δ<sup>13</sup>C-CO<sub>2</sub> at night and minimum CO<sub>2</sub>/maximum δ<sup>13</sup>C-CO<sub>2</sub> during the day. In the wet season diel patterns were less regular in response to variable cloud cover and rainfall. CO<sub>2</sub> isotope data showed that in the wet season, surface CO<sub>2</sub> was predominantly a two-component mixture influenced by C<sub>3</sub> plant assimilation (day) and soil/plant respiration (night), while regional background air from higher altitudes represented an additional CO<sub>2</sub> source in the dry season. Higher wind speeds during the dry season increased vertical mixing compared to the wet season. In addition, night-time advection of high-altitude air during low temperature conditions also promoted mixing in the dry season.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":"10 4","pages":"461-470"},"PeriodicalIF":3.3000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.180","citationCount":"0","resultStr":"{\"title\":\"One year of spectroscopic high-frequency measurements of atmospheric CO2, CH4, H2O and δ13C-CO2 at an Australian Savanna site\",\"authors\":\"Niels C. Munksgaard, Ickjai Lee, Thomas Napier, Costijn Zwart, Lucas A. Cernusak, Michael I. Bird\",\"doi\":\"10.1002/gdj3.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide a 1-year dataset of atmospheric surface CO<sub>2</sub>, CH<sub>4</sub> and H<sub>2</sub>O concentrations and δ<sup>13</sup>C-CO<sub>2</sub> values from an Australian savanna site. These semi-arid ecosystems act as carbon sinks in wet years but the persistence of the sink in dry years is uncertain. The dataset can be used to constrain uncertainties in modelling of greenhouse gas budgets, improve algorithms for satellite measurements and characterize the role of vegetation and soil in modulating atmospheric CO<sub>2</sub> concentrations. We found pronounced seasonal variations in daily mean CO<sub>2</sub> concentrations with an increase (by 5–7 ppmv) after the first rainfall of the wet season in early December with peak concentrations maintained until late January. The CO<sub>2</sub> increase reflected the initiation of rapid microbial respiration from soil and vegetation sources upon initial wetting. As the wet season progressed, daily CO<sub>2</sub> concentrations were variable, but generally decreased back to dry season levels as CO<sub>2</sub> assimilation by photosynthesis increased. Mean daily concentrations of CH<sub>4</sub> increased in the wet season by up to 0.2 ppmv relative to dry season levels as the soil profile became waterlogged after heavy rainfall events. During the dry season there was regular cycling between maximum CO<sub>2</sub>/minimum δ<sup>13</sup>C-CO<sub>2</sub> at night and minimum CO<sub>2</sub>/maximum δ<sup>13</sup>C-CO<sub>2</sub> during the day. In the wet season diel patterns were less regular in response to variable cloud cover and rainfall. CO<sub>2</sub> isotope data showed that in the wet season, surface CO<sub>2</sub> was predominantly a two-component mixture influenced by C<sub>3</sub> plant assimilation (day) and soil/plant respiration (night), while regional background air from higher altitudes represented an additional CO<sub>2</sub> source in the dry season. Higher wind speeds during the dry season increased vertical mixing compared to the wet season. In addition, night-time advection of high-altitude air during low temperature conditions also promoted mixing in the dry season.</p>\",\"PeriodicalId\":54351,\"journal\":{\"name\":\"Geoscience Data Journal\",\"volume\":\"10 4\",\"pages\":\"461-470\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.180\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Data Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.180\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.180","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
One year of spectroscopic high-frequency measurements of atmospheric CO2, CH4, H2O and δ13C-CO2 at an Australian Savanna site
We provide a 1-year dataset of atmospheric surface CO2, CH4 and H2O concentrations and δ13C-CO2 values from an Australian savanna site. These semi-arid ecosystems act as carbon sinks in wet years but the persistence of the sink in dry years is uncertain. The dataset can be used to constrain uncertainties in modelling of greenhouse gas budgets, improve algorithms for satellite measurements and characterize the role of vegetation and soil in modulating atmospheric CO2 concentrations. We found pronounced seasonal variations in daily mean CO2 concentrations with an increase (by 5–7 ppmv) after the first rainfall of the wet season in early December with peak concentrations maintained until late January. The CO2 increase reflected the initiation of rapid microbial respiration from soil and vegetation sources upon initial wetting. As the wet season progressed, daily CO2 concentrations were variable, but generally decreased back to dry season levels as CO2 assimilation by photosynthesis increased. Mean daily concentrations of CH4 increased in the wet season by up to 0.2 ppmv relative to dry season levels as the soil profile became waterlogged after heavy rainfall events. During the dry season there was regular cycling between maximum CO2/minimum δ13C-CO2 at night and minimum CO2/maximum δ13C-CO2 during the day. In the wet season diel patterns were less regular in response to variable cloud cover and rainfall. CO2 isotope data showed that in the wet season, surface CO2 was predominantly a two-component mixture influenced by C3 plant assimilation (day) and soil/plant respiration (night), while regional background air from higher altitudes represented an additional CO2 source in the dry season. Higher wind speeds during the dry season increased vertical mixing compared to the wet season. In addition, night-time advection of high-altitude air during low temperature conditions also promoted mixing in the dry season.
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.