利用美国宇航局地球观测卫星分析巴西巴伊亚州利什曼病的环境风险因素

Moara de Santana Martins Rodgers, Maria Emilia Bavia, Bernard Eichold II, Claire Shipman, N. Owen, H. Winstanley, Margaret Gordon, M. Karapetyan, Marta Mariana Nascimento Silva, Deborah Daniela Madureira Trabuco Carneiro, Luciana Lobato Cardim, Elivelton Da Silva Fonseca, John Brooks Malone
{"title":"利用美国宇航局地球观测卫星分析巴西巴伊亚州利什曼病的环境风险因素","authors":"Moara de Santana Martins Rodgers, Maria Emilia Bavia, Bernard Eichold II, Claire Shipman, N. Owen, H. Winstanley, Margaret Gordon, M. Karapetyan, Marta Mariana Nascimento Silva, Deborah Daniela Madureira Trabuco Carneiro, Luciana Lobato Cardim, Elivelton Da Silva Fonseca, John Brooks Malone","doi":"10.53393/rial.2019.v78.35848","DOIUrl":null,"url":null,"abstract":"NASA’s Earth Observing Satellites (EOS) were used to calculate three vegetation indices, extract precipitation and elevation data, and then evaluate their applicability for assessing risk of visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL) in Bahia State, Brazil. Regression models showed that either form of leishmaniasis can be predicted by NDVI, NDMI, NDWI data products and TRMM) precipitation data (R2= 0.370; p<0.001). Elevation was not significantly associated with the distribution of either VL or CL. In areas of high annual precipitation, CL was 3.6 times more likely to occur than VL. For vegetative moisture (NDMI), CL was 2.11 times more likely to occur than VL. Odds of CL occurrence increased to 5.5 times when vegetation (NDVI) and 13.5 times when liquid water content of vegetation canopies (NDWI) was considered. Areas at risk of CL and VL were mapped based on the selected explanatory variables. Accuracy of models were assessed using area under the receiver operating characteristic curve (AUC=0.72). We propose that statewide scale risk models based on use of EOS products will be a useful tool at 1 km2 spatial resolution to enable health workers to identify and target high risk areas to prevent transmission of leishmaniasis.","PeriodicalId":86209,"journal":{"name":"Revista do Instituto Adolfo Lutz","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental risk factors of leishmaniasis in Bahia State, Brazil using NASA Earth observation satellites\",\"authors\":\"Moara de Santana Martins Rodgers, Maria Emilia Bavia, Bernard Eichold II, Claire Shipman, N. Owen, H. Winstanley, Margaret Gordon, M. Karapetyan, Marta Mariana Nascimento Silva, Deborah Daniela Madureira Trabuco Carneiro, Luciana Lobato Cardim, Elivelton Da Silva Fonseca, John Brooks Malone\",\"doi\":\"10.53393/rial.2019.v78.35848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NASA’s Earth Observing Satellites (EOS) were used to calculate three vegetation indices, extract precipitation and elevation data, and then evaluate their applicability for assessing risk of visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL) in Bahia State, Brazil. Regression models showed that either form of leishmaniasis can be predicted by NDVI, NDMI, NDWI data products and TRMM) precipitation data (R2= 0.370; p<0.001). Elevation was not significantly associated with the distribution of either VL or CL. In areas of high annual precipitation, CL was 3.6 times more likely to occur than VL. For vegetative moisture (NDMI), CL was 2.11 times more likely to occur than VL. Odds of CL occurrence increased to 5.5 times when vegetation (NDVI) and 13.5 times when liquid water content of vegetation canopies (NDWI) was considered. Areas at risk of CL and VL were mapped based on the selected explanatory variables. Accuracy of models were assessed using area under the receiver operating characteristic curve (AUC=0.72). We propose that statewide scale risk models based on use of EOS products will be a useful tool at 1 km2 spatial resolution to enable health workers to identify and target high risk areas to prevent transmission of leishmaniasis.\",\"PeriodicalId\":86209,\"journal\":{\"name\":\"Revista do Instituto Adolfo Lutz\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista do Instituto Adolfo Lutz\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53393/rial.2019.v78.35848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista do Instituto Adolfo Lutz","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53393/rial.2019.v78.35848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用NASA的地球观测卫星(EOS)计算3种植被指数,提取降水和海拔数据,并评估其在巴西巴伊亚州内脏利什曼病(VL)和皮肤利什曼病(CL)风险评估中的适用性。回归模型显示,NDVI、NDMI、NDWI数据产品和TRMM降水数据均可预测两种形式的利什曼病(R2= 0.370;p < 0.001)。升高与VL或CL的分布无显著相关。在年降水量高的地区,CL的发生概率是VL的3.6倍。对于营养水分(NDMI), CL发生的可能性是VL的2.11倍。当考虑植被(NDVI)和植被冠层液态水含量(NDWI)时,CL的发生几率分别增加到5.5倍和13.5倍。根据选择的解释变量绘制了CL和VL风险区域。采用受试者工作特征曲线下面积(AUC=0.72)评价模型的准确性。我们建议,在1平方公里空间分辨率下,基于EOS产品使用的全州范围风险模型将是一个有用的工具,使卫生工作者能够识别和瞄准高风险地区,以预防利什曼病的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental risk factors of leishmaniasis in Bahia State, Brazil using NASA Earth observation satellites
NASA’s Earth Observing Satellites (EOS) were used to calculate three vegetation indices, extract precipitation and elevation data, and then evaluate their applicability for assessing risk of visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL) in Bahia State, Brazil. Regression models showed that either form of leishmaniasis can be predicted by NDVI, NDMI, NDWI data products and TRMM) precipitation data (R2= 0.370; p<0.001). Elevation was not significantly associated with the distribution of either VL or CL. In areas of high annual precipitation, CL was 3.6 times more likely to occur than VL. For vegetative moisture (NDMI), CL was 2.11 times more likely to occur than VL. Odds of CL occurrence increased to 5.5 times when vegetation (NDVI) and 13.5 times when liquid water content of vegetation canopies (NDWI) was considered. Areas at risk of CL and VL were mapped based on the selected explanatory variables. Accuracy of models were assessed using area under the receiver operating characteristic curve (AUC=0.72). We propose that statewide scale risk models based on use of EOS products will be a useful tool at 1 km2 spatial resolution to enable health workers to identify and target high risk areas to prevent transmission of leishmaniasis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aplicação de farinhas de coprodutos de frutas em bolos sem glúten Teste de endotoxina por Fator C recombinante para solução injetável de cloreto de sódio 0,9% Integridade na pesquisa: ética profissional dos cientistas O papel do Comitê de Integridade na Pesquisa do Instituto Adolfo Lutz Associação entre estado nutricional, indicadores socioeconômicos e quesito raça/cor em gestantes do Recôncavo da Bahia, Brasil Avaliação da rotulagem de cosméticos clareadores de pele comercializados em Juazeiro, Bahia, Brasil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1