{"title":"改进深度学习应用的图像压缩方法","authors":"Raed Altabeiri, Moath Alsafasfeh, Mohanad Alhasanat","doi":"10.11591/ijece.v13i5.pp5607-5616","DOIUrl":null,"url":null,"abstract":"In deep learning, dataset plays a main role in training and getting accurate results of detection and recognition objects in an image. Any training model needs a large size of dataset to be more accurate, where improving the dataset size is one of the most research problems that needs enhancement. In this paper, an image compression approach was developed to reduce the dataset size and improve classification accuracy for the trained model using a convolutional neural network (CNN), and speeds up the machine learning process, while maintaining image quality. The results revealed that the best scenario for deep learning models that provided good and acceptable classification accuracy was one that had the following parameters: 80×80 image size, 10 epochs, 64 batch size, 40 images dataset quality (images compressed 60%), and gray image mode. For this scenario a Dog vs Cat dataset is used, and the training time was 48 minutes, classification accuracy was 86%, and images dataset size was 317 MB on storage device. This size makes up 58% of the size of the original image’s dataset, saves 42% of the storage space and reduces the processing resources consumption.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image compression approach for improving deep learning applications\",\"authors\":\"Raed Altabeiri, Moath Alsafasfeh, Mohanad Alhasanat\",\"doi\":\"10.11591/ijece.v13i5.pp5607-5616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deep learning, dataset plays a main role in training and getting accurate results of detection and recognition objects in an image. Any training model needs a large size of dataset to be more accurate, where improving the dataset size is one of the most research problems that needs enhancement. In this paper, an image compression approach was developed to reduce the dataset size and improve classification accuracy for the trained model using a convolutional neural network (CNN), and speeds up the machine learning process, while maintaining image quality. The results revealed that the best scenario for deep learning models that provided good and acceptable classification accuracy was one that had the following parameters: 80×80 image size, 10 epochs, 64 batch size, 40 images dataset quality (images compressed 60%), and gray image mode. For this scenario a Dog vs Cat dataset is used, and the training time was 48 minutes, classification accuracy was 86%, and images dataset size was 317 MB on storage device. This size makes up 58% of the size of the original image’s dataset, saves 42% of the storage space and reduces the processing resources consumption.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5607-5616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5607-5616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
摘要
在深度学习中,数据集在训练和获得图像中目标的准确检测和识别结果方面起着重要作用。任何训练模型都需要更大的数据集规模才能更准确,其中提高数据集规模是最需要加强的研究问题之一。本文开发了一种图像压缩方法,利用卷积神经网络(CNN)减少数据集大小,提高训练模型的分类精度,加快机器学习过程,同时保持图像质量。结果表明,提供良好和可接受的分类精度的深度学习模型的最佳场景是具有以下参数的场景:80×80图像大小,10个epoch, 64个batch大小,40个图像数据集质量(图像压缩60%)和灰度图像模式。本场景使用Dog vs Cat数据集,训练时间为48分钟,分类准确率为86%,存储设备上的图像数据集大小为317 MB。该大小占原始图像数据集大小的58%,节省42%的存储空间,减少处理资源消耗。
Image compression approach for improving deep learning applications
In deep learning, dataset plays a main role in training and getting accurate results of detection and recognition objects in an image. Any training model needs a large size of dataset to be more accurate, where improving the dataset size is one of the most research problems that needs enhancement. In this paper, an image compression approach was developed to reduce the dataset size and improve classification accuracy for the trained model using a convolutional neural network (CNN), and speeds up the machine learning process, while maintaining image quality. The results revealed that the best scenario for deep learning models that provided good and acceptable classification accuracy was one that had the following parameters: 80×80 image size, 10 epochs, 64 batch size, 40 images dataset quality (images compressed 60%), and gray image mode. For this scenario a Dog vs Cat dataset is used, and the training time was 48 minutes, classification accuracy was 86%, and images dataset size was 317 MB on storage device. This size makes up 58% of the size of the original image’s dataset, saves 42% of the storage space and reduces the processing resources consumption.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]