{"title":"基于l4-范数最大化的地震数据插值正交字典学习","authors":"Jingnan Yue, Lihua Fu, Xiao Niu, Wenqian Fang","doi":"10.1080/08123985.2023.2205582","DOIUrl":null,"url":null,"abstract":"Due to geological conditions, acquisition environment, and economic restrictions, acquired seismic data are often incomplete and irregularly distributed, and this affects subsequent migration imaging and inversion. Sparse constraint-based methods are widely used for seismic data interpolation, including fixed-base transform and dictionary learning. Fixed-base transform methods are fast and simple to implement, but the basis function needs to be pre-selected. The dictionary learning method is more adaptive, and provides a means of learning the sparse representation from corrupted data. K-singular value decomposition (K-SVD) is a classical dictionary learning method that combines sparse coding and dictionary updating iteratively. However, the dictionary atoms are updated column-by-column, leading to high computational complexity due to long SVD calculation times. In this study, we evaluated the dictionary learning method via l 4-norm maximisation using an orthogonal dictionary, which is different from the traditional l 0-norm or l 1-norm minimisation, and interpolated the missing traces in the projection onto convex sets (POCS) framework. The optimal objection function is convex, but can be solved using a simple and efficient Matching, Stretching and Projection (MSP) algorithm, which greatly reduces the dictionary learning time. Numerical experiments using synthetic and field data demonstrate the effectiveness of the proposed method.","PeriodicalId":50460,"journal":{"name":"Exploration Geophysics","volume":"54 1","pages":"589 - 600"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal dictionary learning based on l 4-Norm maximisation for seismic data interpolation\",\"authors\":\"Jingnan Yue, Lihua Fu, Xiao Niu, Wenqian Fang\",\"doi\":\"10.1080/08123985.2023.2205582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to geological conditions, acquisition environment, and economic restrictions, acquired seismic data are often incomplete and irregularly distributed, and this affects subsequent migration imaging and inversion. Sparse constraint-based methods are widely used for seismic data interpolation, including fixed-base transform and dictionary learning. Fixed-base transform methods are fast and simple to implement, but the basis function needs to be pre-selected. The dictionary learning method is more adaptive, and provides a means of learning the sparse representation from corrupted data. K-singular value decomposition (K-SVD) is a classical dictionary learning method that combines sparse coding and dictionary updating iteratively. However, the dictionary atoms are updated column-by-column, leading to high computational complexity due to long SVD calculation times. In this study, we evaluated the dictionary learning method via l 4-norm maximisation using an orthogonal dictionary, which is different from the traditional l 0-norm or l 1-norm minimisation, and interpolated the missing traces in the projection onto convex sets (POCS) framework. The optimal objection function is convex, but can be solved using a simple and efficient Matching, Stretching and Projection (MSP) algorithm, which greatly reduces the dictionary learning time. Numerical experiments using synthetic and field data demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":50460,\"journal\":{\"name\":\"Exploration Geophysics\",\"volume\":\"54 1\",\"pages\":\"589 - 600\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/08123985.2023.2205582\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2023.2205582","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Orthogonal dictionary learning based on l 4-Norm maximisation for seismic data interpolation
Due to geological conditions, acquisition environment, and economic restrictions, acquired seismic data are often incomplete and irregularly distributed, and this affects subsequent migration imaging and inversion. Sparse constraint-based methods are widely used for seismic data interpolation, including fixed-base transform and dictionary learning. Fixed-base transform methods are fast and simple to implement, but the basis function needs to be pre-selected. The dictionary learning method is more adaptive, and provides a means of learning the sparse representation from corrupted data. K-singular value decomposition (K-SVD) is a classical dictionary learning method that combines sparse coding and dictionary updating iteratively. However, the dictionary atoms are updated column-by-column, leading to high computational complexity due to long SVD calculation times. In this study, we evaluated the dictionary learning method via l 4-norm maximisation using an orthogonal dictionary, which is different from the traditional l 0-norm or l 1-norm minimisation, and interpolated the missing traces in the projection onto convex sets (POCS) framework. The optimal objection function is convex, but can be solved using a simple and efficient Matching, Stretching and Projection (MSP) algorithm, which greatly reduces the dictionary learning time. Numerical experiments using synthetic and field data demonstrate the effectiveness of the proposed method.
期刊介绍:
Exploration Geophysics is published on behalf of the Australian Society of Exploration Geophysicists (ASEG), Society of Exploration Geophysics of Japan (SEGJ), and Korean Society of Earth and Exploration Geophysicists (KSEG).
The journal presents significant case histories, advances in data interpretation, and theoretical developments resulting from original research in exploration and applied geophysics. Papers that may have implications for field practice in Australia, even if they report work from other continents, will be welcome. ´Exploration and applied geophysics´ will be interpreted broadly by the editors, so that geotechnical and environmental studies are by no means precluded.
Papers are expected to be of a high standard. Exploration Geophysics uses an international pool of reviewers drawn from industry and academic authorities as selected by the editorial panel.
The journal provides a common meeting ground for geophysicists active in either field studies or basic research.