TRP与ANO1相互作用的生理意义

Pain Research Pub Date : 2018-03-30 DOI:10.11154/PAIN.33.1
Yasunori Takayama, K. Shibasaki, H. Furue, D. Uta, M. Tominaga
{"title":"TRP与ANO1相互作用的生理意义","authors":"Yasunori Takayama, K. Shibasaki, H. Furue, D. Uta, M. Tominaga","doi":"10.11154/PAIN.33.1","DOIUrl":null,"url":null,"abstract":"A calcium–activated chloride channel, anoctamin 1 (ANO1), is strongly activated by intracellular calcium increases through activation of transient receptor potential (TRP) channel because these ion channels physically interact with one another on the plasma membrane. The functional inter action occurs when TRP channels and ANO1 are within 20 nm, although ANO1 could be activated by global calcium increases as well. Recently, we obtained data that suggested the significance of the inter actions in the choroid plexus and primary sensory neurons. TRPV4 and ANO1 inter action in the apical membrane of choroid plexus epithelial cells could induce water efflux to the ventricle side. This interaction could be important in the homeostatic release of cerebro spinal fluid. That is, TRPV4 could be activated by the combined effects of body temperature and membrane stretch evoked by continuous water influx from the basolateral (capillary) side. Furthermore, TRPV1 and ANO1 inter action enhances TRPV1–mediated pain sensation. TRPV1 and ANO1 are co–expressed in small dorsal root ganglion (DRG) neurons. In our study, ANO1 current was induced by capsaicin application in small DRG neurons. ANO1–dependent depolarization following TRPV1 activation evoked action potentials. Furthermore, capsaicin–evoked pain–related behaviors in mice were strongly inhibited by a selective ANO1 blocker whereas the compound did not completely abolish the behaviors. The significance of these observations is that selective ANO1 inhibi tion reduces pain sensation. We also investigated non–specific inhibitory effects of chemicals on ion channel activities. We recently found that 4–isopropylcyclohexanol (4–iPr–CyH–OH) has an analgesic effect on burning pain sensation. 4–iPr–CyH–OH, a menthol analogue, is an aliphatic higher alcohol and used as a food– or flavor–additive. This compound inhibits TRPV1 and ANO1 without agonistic effects on TRPV1, TRPA1 or ANO1. Menthol also inhibits TRPV1 and ANO1, however, the TRPM8 agonist activates TRPA1 followed by pain sensation. Therefore, 4–iPr–CyH–OH might be a novel analgesia, Symposium 3 : The 39th Annual Meeting of JASP","PeriodicalId":41148,"journal":{"name":"Pain Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.11154/PAIN.33.1","citationCount":"1","resultStr":"{\"title\":\"Physiological significances of TRP–ANO1 interaction\",\"authors\":\"Yasunori Takayama, K. Shibasaki, H. Furue, D. Uta, M. Tominaga\",\"doi\":\"10.11154/PAIN.33.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A calcium–activated chloride channel, anoctamin 1 (ANO1), is strongly activated by intracellular calcium increases through activation of transient receptor potential (TRP) channel because these ion channels physically interact with one another on the plasma membrane. The functional inter action occurs when TRP channels and ANO1 are within 20 nm, although ANO1 could be activated by global calcium increases as well. Recently, we obtained data that suggested the significance of the inter actions in the choroid plexus and primary sensory neurons. TRPV4 and ANO1 inter action in the apical membrane of choroid plexus epithelial cells could induce water efflux to the ventricle side. This interaction could be important in the homeostatic release of cerebro spinal fluid. That is, TRPV4 could be activated by the combined effects of body temperature and membrane stretch evoked by continuous water influx from the basolateral (capillary) side. Furthermore, TRPV1 and ANO1 inter action enhances TRPV1–mediated pain sensation. TRPV1 and ANO1 are co–expressed in small dorsal root ganglion (DRG) neurons. In our study, ANO1 current was induced by capsaicin application in small DRG neurons. ANO1–dependent depolarization following TRPV1 activation evoked action potentials. Furthermore, capsaicin–evoked pain–related behaviors in mice were strongly inhibited by a selective ANO1 blocker whereas the compound did not completely abolish the behaviors. The significance of these observations is that selective ANO1 inhibi tion reduces pain sensation. We also investigated non–specific inhibitory effects of chemicals on ion channel activities. We recently found that 4–isopropylcyclohexanol (4–iPr–CyH–OH) has an analgesic effect on burning pain sensation. 4–iPr–CyH–OH, a menthol analogue, is an aliphatic higher alcohol and used as a food– or flavor–additive. This compound inhibits TRPV1 and ANO1 without agonistic effects on TRPV1, TRPA1 or ANO1. Menthol also inhibits TRPV1 and ANO1, however, the TRPM8 agonist activates TRPA1 followed by pain sensation. Therefore, 4–iPr–CyH–OH might be a novel analgesia, Symposium 3 : The 39th Annual Meeting of JASP\",\"PeriodicalId\":41148,\"journal\":{\"name\":\"Pain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.11154/PAIN.33.1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pain Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11154/PAIN.33.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pain Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11154/PAIN.33.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

钙激活的氯离子通道,anoctamin 1(ANO1),通过激活瞬时受体电位(TRP)通道而被细胞内钙增加强烈激活,因为这些离子通道在质膜上相互作用。当TRP通道和ANO1在20nm内时,发生功能相互作用,尽管ANO1也可以被整体钙增加激活。最近,我们获得的数据表明脉络丛和初级感觉神经元的相互作用具有重要意义。TRPV4和ANO1在脉络丛上皮细胞顶膜的相互作用可诱导水向脑室侧流出。这种相互作用在脑脊髓液的稳态释放中可能很重要。也就是说,TRPV4可以通过体温和从基底外侧(毛细管)侧持续涌入的水引起的膜拉伸的联合作用而被激活。此外,TRPV1和ANO1的相互作用增强了TRPV1介导的疼痛感。TRPV1和ANO1在小背根神经节(DRG)神经元中共表达。在我们的研究中,辣椒素在小DRG神经元中的应用诱导了ANO1电流。TRPV1激活后的ANO1依赖性去极化诱发动作电位。此外,辣椒素诱发的小鼠疼痛相关行为被选择性ANO1阻滞剂强烈抑制,而该化合物并没有完全消除这些行为。这些观察结果的意义在于选择性抑制ANO1可以减轻疼痛感。我们还研究了化学物质对离子通道活性的非特异性抑制作用。我们最近发现,4-异丙基环己醇(4-iPr–CyH–OH)对灼痛有镇痛作用。4–iPr–CyH–OH是一种薄荷醇类似物,是一种脂肪族高级醇,用作食品或香料添加剂。该化合物抑制TRPV1和ANO1而对TRPV1、TRPA1或ANO1没有激动作用。薄荷醇也抑制TRPV1和ANO1,然而,TRPM8激动剂激活TRPA1,然后是疼痛感。因此,4-iPr–CyH–OH可能是一种新的镇痛方法,研讨会3:JASP第39届年会
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physiological significances of TRP–ANO1 interaction
A calcium–activated chloride channel, anoctamin 1 (ANO1), is strongly activated by intracellular calcium increases through activation of transient receptor potential (TRP) channel because these ion channels physically interact with one another on the plasma membrane. The functional inter action occurs when TRP channels and ANO1 are within 20 nm, although ANO1 could be activated by global calcium increases as well. Recently, we obtained data that suggested the significance of the inter actions in the choroid plexus and primary sensory neurons. TRPV4 and ANO1 inter action in the apical membrane of choroid plexus epithelial cells could induce water efflux to the ventricle side. This interaction could be important in the homeostatic release of cerebro spinal fluid. That is, TRPV4 could be activated by the combined effects of body temperature and membrane stretch evoked by continuous water influx from the basolateral (capillary) side. Furthermore, TRPV1 and ANO1 inter action enhances TRPV1–mediated pain sensation. TRPV1 and ANO1 are co–expressed in small dorsal root ganglion (DRG) neurons. In our study, ANO1 current was induced by capsaicin application in small DRG neurons. ANO1–dependent depolarization following TRPV1 activation evoked action potentials. Furthermore, capsaicin–evoked pain–related behaviors in mice were strongly inhibited by a selective ANO1 blocker whereas the compound did not completely abolish the behaviors. The significance of these observations is that selective ANO1 inhibi tion reduces pain sensation. We also investigated non–specific inhibitory effects of chemicals on ion channel activities. We recently found that 4–isopropylcyclohexanol (4–iPr–CyH–OH) has an analgesic effect on burning pain sensation. 4–iPr–CyH–OH, a menthol analogue, is an aliphatic higher alcohol and used as a food– or flavor–additive. This compound inhibits TRPV1 and ANO1 without agonistic effects on TRPV1, TRPA1 or ANO1. Menthol also inhibits TRPV1 and ANO1, however, the TRPM8 agonist activates TRPA1 followed by pain sensation. Therefore, 4–iPr–CyH–OH might be a novel analgesia, Symposium 3 : The 39th Annual Meeting of JASP
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pain Research
Pain Research CLINICAL NEUROLOGY-
自引率
0.00%
发文量
14
期刊最新文献
Interaction between dorsal horn neuron subsets operated by a neuropeptide Y and prodynorphin promoter and its contribution to Aβ fiber–induced allodynia–like behavior in rats Expression profiles of Tmem120A ⁄ TACAN in rat skeletal muscle subjected to exercise and inflammation Expression profiles of Tmem120A ⁄ TACAN in rat skeletal muscle subjected to exercise and inflammation Outcomes of 707 cervical selective nerve root blocks using a fluoroscopy–guided posterolateral oblique approach Exploratory study of factors affecting quality of life among patients with chronic musculoskeletal pain: A cross–sectional study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1