一种新的具有统计性质的四参数扩展指数分布及其应用

IF 1.1 Q3 STATISTICS & PROBABILITY Pakistan Journal of Statistics and Operation Research Pub Date : 2022-03-04 DOI:10.18187/pjsor.v18i1.3872
A. Hassan, R. Mohamed, O. Kharazmi, H. Nagy
{"title":"一种新的具有统计性质的四参数扩展指数分布及其应用","authors":"A. Hassan, R. Mohamed, O. Kharazmi, H. Nagy","doi":"10.18187/pjsor.v18i1.3872","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel generalization of the extended exponential distribution with four parameters through the Kumaraswamy family. The proposed model is referred to as the Kumaraswamy extended exponential (KwEE). The significance of the suggested distribution from its flexibility in applications and data modeling. As specific sub-models, it includes the exponential, Kumaraswamy exponential, Kumaraswamy Lindley, Lindley, extended exponential, exponentiated Lindley, gamma and generalized exponential distributions. The representation of the density function, quantile function, ordinary and incomplete moments, generating function, and reliability of the KwEE distribution are all derived. The maximum likelihood approach is used to estimate model parameters. A simulation study for maximum likelihood estimates was used to investigate the behaviour of the model parameters. A numerical analysis is performed for various sample sizes and parameter values to analyze the behaviour of estimates using accuracy measures. According to a simulated investigation, the KwEE's maximum likelihood estimates perform well with increased sample size. We provide two real-world examples utilizing applied research to demonstrate that the new model is more effective.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Four Parameter Extended Exponential Distribution with Statistical Properties and Applications\",\"authors\":\"A. Hassan, R. Mohamed, O. Kharazmi, H. Nagy\",\"doi\":\"10.18187/pjsor.v18i1.3872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a novel generalization of the extended exponential distribution with four parameters through the Kumaraswamy family. The proposed model is referred to as the Kumaraswamy extended exponential (KwEE). The significance of the suggested distribution from its flexibility in applications and data modeling. As specific sub-models, it includes the exponential, Kumaraswamy exponential, Kumaraswamy Lindley, Lindley, extended exponential, exponentiated Lindley, gamma and generalized exponential distributions. The representation of the density function, quantile function, ordinary and incomplete moments, generating function, and reliability of the KwEE distribution are all derived. The maximum likelihood approach is used to estimate model parameters. A simulation study for maximum likelihood estimates was used to investigate the behaviour of the model parameters. A numerical analysis is performed for various sample sizes and parameter values to analyze the behaviour of estimates using accuracy measures. According to a simulated investigation, the KwEE's maximum likelihood estimates perform well with increased sample size. We provide two real-world examples utilizing applied research to demonstrate that the new model is more effective.\",\"PeriodicalId\":19973,\"journal\":{\"name\":\"Pakistan Journal of Statistics and Operation Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Statistics and Operation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v18i1.3872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i1.3872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们通过Kumaraswamy族引入了四参数扩展指数分布的一个新的推广。所提出的模型被称为Kumaraswamy扩展指数(KwEE)。建议分布的重要性来自于它在应用程序和数据建模方面的灵活性。作为具体的子模型,它包括指数、Kumaraswamy指数、Kumalaswamy Lindley、Lindley、扩展指数、指数Lindley、gamma和广义指数分布。导出了KwEE分布的密度函数、分位数函数、常矩和不完全矩、母函数和可靠性的表示。最大似然法用于估计模型参数。使用最大似然估计的模拟研究来研究模型参数的行为。对各种样本大小和参数值进行数值分析,以使用精度测量来分析估计的行为。根据模拟调查,随着样本量的增加,KwEE的最大似然估计表现良好。我们利用应用研究提供了两个真实世界的例子来证明新模型更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Four Parameter Extended Exponential Distribution with Statistical Properties and Applications
In this work, we introduce a novel generalization of the extended exponential distribution with four parameters through the Kumaraswamy family. The proposed model is referred to as the Kumaraswamy extended exponential (KwEE). The significance of the suggested distribution from its flexibility in applications and data modeling. As specific sub-models, it includes the exponential, Kumaraswamy exponential, Kumaraswamy Lindley, Lindley, extended exponential, exponentiated Lindley, gamma and generalized exponential distributions. The representation of the density function, quantile function, ordinary and incomplete moments, generating function, and reliability of the KwEE distribution are all derived. The maximum likelihood approach is used to estimate model parameters. A simulation study for maximum likelihood estimates was used to investigate the behaviour of the model parameters. A numerical analysis is performed for various sample sizes and parameter values to analyze the behaviour of estimates using accuracy measures. According to a simulated investigation, the KwEE's maximum likelihood estimates perform well with increased sample size. We provide two real-world examples utilizing applied research to demonstrate that the new model is more effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
26.70%
发文量
53
期刊介绍: Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.
期刊最新文献
Modeling Real-life Data Sets with a Novel G Family of Continuous Probability Distributions: Statistical Properties, and Copulas Schwarz’s Bayesian Information Criteria: A Model Selection Between Bayesian-SEM and Partial Least Squares-SEM Estimation based on Ranked Set Sampling for Farlie--Gumbel--Morgenstern Bivariate Weibull Distribution Parameters with an application to medical data Modeling Climate data using the Quartic Transmuted Weibull Distribution and Different Estimation Methods Multimodal Alpha Skew Normal Distribution: A New Distribution to Model Skewed Multimodal Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1