{"title":"一种新的具有统计性质的四参数扩展指数分布及其应用","authors":"A. Hassan, R. Mohamed, O. Kharazmi, H. Nagy","doi":"10.18187/pjsor.v18i1.3872","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel generalization of the extended exponential distribution with four parameters through the Kumaraswamy family. The proposed model is referred to as the Kumaraswamy extended exponential (KwEE). The significance of the suggested distribution from its flexibility in applications and data modeling. As specific sub-models, it includes the exponential, Kumaraswamy exponential, Kumaraswamy Lindley, Lindley, extended exponential, exponentiated Lindley, gamma and generalized exponential distributions. The representation of the density function, quantile function, ordinary and incomplete moments, generating function, and reliability of the KwEE distribution are all derived. The maximum likelihood approach is used to estimate model parameters. A simulation study for maximum likelihood estimates was used to investigate the behaviour of the model parameters. A numerical analysis is performed for various sample sizes and parameter values to analyze the behaviour of estimates using accuracy measures. According to a simulated investigation, the KwEE's maximum likelihood estimates perform well with increased sample size. We provide two real-world examples utilizing applied research to demonstrate that the new model is more effective.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Four Parameter Extended Exponential Distribution with Statistical Properties and Applications\",\"authors\":\"A. Hassan, R. Mohamed, O. Kharazmi, H. Nagy\",\"doi\":\"10.18187/pjsor.v18i1.3872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a novel generalization of the extended exponential distribution with four parameters through the Kumaraswamy family. The proposed model is referred to as the Kumaraswamy extended exponential (KwEE). The significance of the suggested distribution from its flexibility in applications and data modeling. As specific sub-models, it includes the exponential, Kumaraswamy exponential, Kumaraswamy Lindley, Lindley, extended exponential, exponentiated Lindley, gamma and generalized exponential distributions. The representation of the density function, quantile function, ordinary and incomplete moments, generating function, and reliability of the KwEE distribution are all derived. The maximum likelihood approach is used to estimate model parameters. A simulation study for maximum likelihood estimates was used to investigate the behaviour of the model parameters. A numerical analysis is performed for various sample sizes and parameter values to analyze the behaviour of estimates using accuracy measures. According to a simulated investigation, the KwEE's maximum likelihood estimates perform well with increased sample size. We provide two real-world examples utilizing applied research to demonstrate that the new model is more effective.\",\"PeriodicalId\":19973,\"journal\":{\"name\":\"Pakistan Journal of Statistics and Operation Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Statistics and Operation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v18i1.3872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i1.3872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A New Four Parameter Extended Exponential Distribution with Statistical Properties and Applications
In this work, we introduce a novel generalization of the extended exponential distribution with four parameters through the Kumaraswamy family. The proposed model is referred to as the Kumaraswamy extended exponential (KwEE). The significance of the suggested distribution from its flexibility in applications and data modeling. As specific sub-models, it includes the exponential, Kumaraswamy exponential, Kumaraswamy Lindley, Lindley, extended exponential, exponentiated Lindley, gamma and generalized exponential distributions. The representation of the density function, quantile function, ordinary and incomplete moments, generating function, and reliability of the KwEE distribution are all derived. The maximum likelihood approach is used to estimate model parameters. A simulation study for maximum likelihood estimates was used to investigate the behaviour of the model parameters. A numerical analysis is performed for various sample sizes and parameter values to analyze the behaviour of estimates using accuracy measures. According to a simulated investigation, the KwEE's maximum likelihood estimates perform well with increased sample size. We provide two real-world examples utilizing applied research to demonstrate that the new model is more effective.
期刊介绍:
Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.