用RSM法和动力学研究Fe–Mn/Al2O3纳米催化剂对轻烯烃生产的催化性能

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL International Journal of Chemical Kinetics Pub Date : 2023-08-09 DOI:10.1002/kin.21688
Maryam Arsalanfar
{"title":"用RSM法和动力学研究Fe–Mn/Al2O3纳米催化剂对轻烯烃生产的催化性能","authors":"Maryam Arsalanfar","doi":"10.1002/kin.21688","DOIUrl":null,"url":null,"abstract":"<p>The Fe–Mn/Al<sub>2</sub>O<sub>3</sub> nanocatalysts were manufactured via the sol-gel procedure and were evaluated for Fischer–Tropsch synthesis. The impact of different operational parameters of <i>T</i>, <i>P</i>, and H<sub>2</sub>/CO ratio on the catalytic performance for light olefins production has been studied using response surface methodology (RSM). Furthermore, the optimization and modeling of selected responses were also carried out via RSM and historical data design type of DOE; and the best process conditions were found to be <i>T</i> = 365°C, H<sub>2</sub>/CO = 1.50, and <i>P</i> = 1.50 bar. The mechanism of CO hydrogenation reaction over the Fe–Mn/Al<sub>2</sub>O<sub>3</sub> nanocatalysts was also investigated using the non-linear regression method. It was found that the mechanism of the CO hydrogenation reaction is based on the Eley–Rideal type and the best-fitted equation for this mechanism was found to be −<i>r</i><sub>CO</sub> = KP<sub>CO</sub>P<sub>H2</sub>/1+αP<sub>CO</sub>. The obtained value of activation energy (85.20 kJ mol<sup>−1</sup>) affirmed the absence of internal mass transfer limitations. The physico-chemical properties of the samples were investigated by various techniques of XRD, BET, TPR, TGA, and DSC.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 1","pages":"3-19"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation of the catalytic performance of Fe–Mn/Al2O3 nanocatalyst for light olefins production using RSM method and kinetic study\",\"authors\":\"Maryam Arsalanfar\",\"doi\":\"10.1002/kin.21688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Fe–Mn/Al<sub>2</sub>O<sub>3</sub> nanocatalysts were manufactured via the sol-gel procedure and were evaluated for Fischer–Tropsch synthesis. The impact of different operational parameters of <i>T</i>, <i>P</i>, and H<sub>2</sub>/CO ratio on the catalytic performance for light olefins production has been studied using response surface methodology (RSM). Furthermore, the optimization and modeling of selected responses were also carried out via RSM and historical data design type of DOE; and the best process conditions were found to be <i>T</i> = 365°C, H<sub>2</sub>/CO = 1.50, and <i>P</i> = 1.50 bar. The mechanism of CO hydrogenation reaction over the Fe–Mn/Al<sub>2</sub>O<sub>3</sub> nanocatalysts was also investigated using the non-linear regression method. It was found that the mechanism of the CO hydrogenation reaction is based on the Eley–Rideal type and the best-fitted equation for this mechanism was found to be −<i>r</i><sub>CO</sub> = KP<sub>CO</sub>P<sub>H2</sub>/1+αP<sub>CO</sub>. The obtained value of activation energy (85.20 kJ mol<sup>−1</sup>) affirmed the absence of internal mass transfer limitations. The physico-chemical properties of the samples were investigated by various techniques of XRD, BET, TPR, TGA, and DSC.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":\"56 1\",\"pages\":\"3-19\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21688\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21688","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过溶胶-凝胶法制备了Fe-Mn /Al2O3纳米催化剂,并对其进行了费托合成评价。采用响应面法(RSM)研究了不同操作参数(T、P和H2/CO比)对轻烯烃生产催化性能的影响。同时,对选取的响应进行了RSM和DOE历史数据设计类型的优化建模;最佳工艺条件为T = 365℃,H2/CO = 1.50, P = 1.50 bar。采用非线性回归方法研究了Fe-Mn /Al2O3纳米催化剂上CO加氢反应的机理。结果表明,CO加氢反应的机理为Eley-Rideal型,最佳拟合方程为- rCO = KPCOPH2/1+αPCO。得到的活化能为85.20 kJ mol−1,证实了内部传质不受限制。采用XRD、BET、TPR、TGA、DSC等多种技术对样品的理化性质进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An investigation of the catalytic performance of Fe–Mn/Al2O3 nanocatalyst for light olefins production using RSM method and kinetic study

The Fe–Mn/Al2O3 nanocatalysts were manufactured via the sol-gel procedure and were evaluated for Fischer–Tropsch synthesis. The impact of different operational parameters of T, P, and H2/CO ratio on the catalytic performance for light olefins production has been studied using response surface methodology (RSM). Furthermore, the optimization and modeling of selected responses were also carried out via RSM and historical data design type of DOE; and the best process conditions were found to be T = 365°C, H2/CO = 1.50, and P = 1.50 bar. The mechanism of CO hydrogenation reaction over the Fe–Mn/Al2O3 nanocatalysts was also investigated using the non-linear regression method. It was found that the mechanism of the CO hydrogenation reaction is based on the Eley–Rideal type and the best-fitted equation for this mechanism was found to be −rCO = KPCOPH2/1+αPCO. The obtained value of activation energy (85.20 kJ mol−1) affirmed the absence of internal mass transfer limitations. The physico-chemical properties of the samples were investigated by various techniques of XRD, BET, TPR, TGA, and DSC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
期刊最新文献
Issue Information Issue Information Force training neural network potential energy surface models Issue Information Folic acid as a green inhibitor for corrosion protection of Q235 carbon steel in 3.5 wt% NaCl solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1