块茎废物和水果废物的厌氧共消化:协同作用和提高沼气产量

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL International Journal of Chemical Engineering Pub Date : 2023-04-19 DOI:10.1155/2023/6637249
Register Mrosso, Joseph Kiplagat, A. C. Mecha
{"title":"块茎废物和水果废物的厌氧共消化:协同作用和提高沼气产量","authors":"Register Mrosso, Joseph Kiplagat, A. C. Mecha","doi":"10.1155/2023/6637249","DOIUrl":null,"url":null,"abstract":"Increased urbanization and consumerism have resulted in the excessive release of food waste and municipal solid waste. Such wastes contain abundant organic matter that can be transformed into energy, addressing the twin challenges of waste management and energy insecurity. In recent years, different studies have investigated ways of producing biogas through the codigestion of organic wastes. In this work, different food wastes were codigested and the biogas yield was determined. The effect of feedstock mixing ratios, temperature, and pH was studied. A mixing ratio of 1 : 1 produced the highest biogas yield (2907 ± 32 mL), nearly twice, which was obtained at a ratio of 1 : 4 (1532 ± 17 mL). The biogas yield increased with the temperature rise. The lowest yield of 2907 ± 32 mL was obtained at 20°C, while the highest yield of 4963 ± 54.6 mL was obtained at 40°C. Regarding pH, the yield was 2808 ± 31 mL at pH 6.5 and 7810 ± 86 mL at pH 7.3. This indicated a 178.1% increase in the biogas yield. The CN ratio for tuber waste and fruit waste was 18 and 28, respectively, while the corresponding pH was 6.7 and 6.9. A positive synergy index of 4.5 was obtained, which is higher than what is reported in the literature of codigested substrates. Irish potato peels and banana peels produced the highest biogas yield and are recommended for use as codigested feedstock.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Anaerobic Codigestion of Tuber Waste and Fruit Waste: Synergy and Enhanced Biogas Production\",\"authors\":\"Register Mrosso, Joseph Kiplagat, A. C. Mecha\",\"doi\":\"10.1155/2023/6637249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased urbanization and consumerism have resulted in the excessive release of food waste and municipal solid waste. Such wastes contain abundant organic matter that can be transformed into energy, addressing the twin challenges of waste management and energy insecurity. In recent years, different studies have investigated ways of producing biogas through the codigestion of organic wastes. In this work, different food wastes were codigested and the biogas yield was determined. The effect of feedstock mixing ratios, temperature, and pH was studied. A mixing ratio of 1 : 1 produced the highest biogas yield (2907 ± 32 mL), nearly twice, which was obtained at a ratio of 1 : 4 (1532 ± 17 mL). The biogas yield increased with the temperature rise. The lowest yield of 2907 ± 32 mL was obtained at 20°C, while the highest yield of 4963 ± 54.6 mL was obtained at 40°C. Regarding pH, the yield was 2808 ± 31 mL at pH 6.5 and 7810 ± 86 mL at pH 7.3. This indicated a 178.1% increase in the biogas yield. The CN ratio for tuber waste and fruit waste was 18 and 28, respectively, while the corresponding pH was 6.7 and 6.9. A positive synergy index of 4.5 was obtained, which is higher than what is reported in the literature of codigested substrates. Irish potato peels and banana peels produced the highest biogas yield and are recommended for use as codigested feedstock.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6637249\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6637249","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2

摘要

城市化和消费主义的加剧导致了食物垃圾和城市固体废物的过度释放。这些废物含有丰富的有机物,可以转化为能源,解决废物管理和能源不安全的双重挑战。近年来,不同的研究已经调查了通过有机废物的共处理来生产沼气的方法。在这项工作中,对不同的食物垃圾进行了共消化,并确定了沼气产量。研究了原料混合比、温度和pH的影响。混合比为1 : 1产生了最高的沼气产量(2907 ± 32 mL),几乎两次,以1的比例获得 : 4(1532 ± 17 mL)。沼气产量随温度升高而增加。最低产量2907 ± 32 在20°C下获得mL,而最高产率为4963 ± 54.6 在40°C下获得mL。关于pH,产率为2808 ± 31 mL,pH 6.5和7810 ± 86 mL,pH为7.3。这表明沼气产量增加了178.1%。块茎废弃物和水果废弃物的CN比率分别为18和28,而相应的pH分别为6.7和6.9。获得了4.5的正协同指数,该指数高于共消化底物文献中的报道。爱尔兰土豆皮和香蕉皮产生的沼气产量最高,建议用作共消化原料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anaerobic Codigestion of Tuber Waste and Fruit Waste: Synergy and Enhanced Biogas Production
Increased urbanization and consumerism have resulted in the excessive release of food waste and municipal solid waste. Such wastes contain abundant organic matter that can be transformed into energy, addressing the twin challenges of waste management and energy insecurity. In recent years, different studies have investigated ways of producing biogas through the codigestion of organic wastes. In this work, different food wastes were codigested and the biogas yield was determined. The effect of feedstock mixing ratios, temperature, and pH was studied. A mixing ratio of 1 : 1 produced the highest biogas yield (2907 ± 32 mL), nearly twice, which was obtained at a ratio of 1 : 4 (1532 ± 17 mL). The biogas yield increased with the temperature rise. The lowest yield of 2907 ± 32 mL was obtained at 20°C, while the highest yield of 4963 ± 54.6 mL was obtained at 40°C. Regarding pH, the yield was 2808 ± 31 mL at pH 6.5 and 7810 ± 86 mL at pH 7.3. This indicated a 178.1% increase in the biogas yield. The CN ratio for tuber waste and fruit waste was 18 and 28, respectively, while the corresponding pH was 6.7 and 6.9. A positive synergy index of 4.5 was obtained, which is higher than what is reported in the literature of codigested substrates. Irish potato peels and banana peels produced the highest biogas yield and are recommended for use as codigested feedstock.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Chemical Engineering
International Journal of Chemical Engineering Chemical Engineering-General Chemical Engineering
CiteScore
4.00
自引率
3.70%
发文量
95
审稿时长
14 weeks
期刊介绍: International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures. As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
A Review of Stochastic Optimization Algorithms Applied in Food Engineering Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit Effective Removal of Ibuprofen from Aqueous Solution Using Cationic Surface-Active Agents in Dissolved Air-Flotation Process Effect of inside Surface Baffle Conditions on Just Drawdown Impeller Rotational Speed A Study on the Valorization of Rice Straw into Different Value-Added Products and Biofuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1