{"title":"模糊环境下不完全覆盖的负载共享可修系统","authors":"Ritu Gupta, Zainab Tasneem","doi":"10.1108/ijqrm-08-2021-0298","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this study is to develop Markovian model to obtain the transient probabilities to determine mean-time-to-failure and reliability function and further steady state availability of the repairable system. As the system parameters are uncontrollable factors; thus the life times, repair times and recovery/reboot time are assumed to be as uncertain or fuzzified distributions.Design/methodology/approachThe fuzzy approach is introduced to investigate the reliability measures of load sharing repairable system which consists of two operating units and one standby unit. On the failure of an operating component, it is instantly spotted, located and sent for recovery procedures with coverage probability. In case of imperfect recovery, reboot takes place.FindingsOn the basis of extension principle and mathematical programming approach, the authors establish membership functions for system characteristics with the help of α-cuts. To demonstrate the practical validity of the proposed fuzzified model, numerical illustrations are performed.Originality/valueThe model proposed for reliability analysis may cheer up the continuance of the work towards more applications in repairable systems. Therefore, the reader is provided with useful intuition into the nature of fuzzy computations and practical amendments while measuring ambiguous data.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Load sharing repairable system with imperfect coverage in fuzzy environment\",\"authors\":\"Ritu Gupta, Zainab Tasneem\",\"doi\":\"10.1108/ijqrm-08-2021-0298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this study is to develop Markovian model to obtain the transient probabilities to determine mean-time-to-failure and reliability function and further steady state availability of the repairable system. As the system parameters are uncontrollable factors; thus the life times, repair times and recovery/reboot time are assumed to be as uncertain or fuzzified distributions.Design/methodology/approachThe fuzzy approach is introduced to investigate the reliability measures of load sharing repairable system which consists of two operating units and one standby unit. On the failure of an operating component, it is instantly spotted, located and sent for recovery procedures with coverage probability. In case of imperfect recovery, reboot takes place.FindingsOn the basis of extension principle and mathematical programming approach, the authors establish membership functions for system characteristics with the help of α-cuts. To demonstrate the practical validity of the proposed fuzzified model, numerical illustrations are performed.Originality/valueThe model proposed for reliability analysis may cheer up the continuance of the work towards more applications in repairable systems. Therefore, the reader is provided with useful intuition into the nature of fuzzy computations and practical amendments while measuring ambiguous data.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-08-2021-0298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-08-2021-0298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Load sharing repairable system with imperfect coverage in fuzzy environment
PurposeThe purpose of this study is to develop Markovian model to obtain the transient probabilities to determine mean-time-to-failure and reliability function and further steady state availability of the repairable system. As the system parameters are uncontrollable factors; thus the life times, repair times and recovery/reboot time are assumed to be as uncertain or fuzzified distributions.Design/methodology/approachThe fuzzy approach is introduced to investigate the reliability measures of load sharing repairable system which consists of two operating units and one standby unit. On the failure of an operating component, it is instantly spotted, located and sent for recovery procedures with coverage probability. In case of imperfect recovery, reboot takes place.FindingsOn the basis of extension principle and mathematical programming approach, the authors establish membership functions for system characteristics with the help of α-cuts. To demonstrate the practical validity of the proposed fuzzified model, numerical illustrations are performed.Originality/valueThe model proposed for reliability analysis may cheer up the continuance of the work towards more applications in repairable systems. Therefore, the reader is provided with useful intuition into the nature of fuzzy computations and practical amendments while measuring ambiguous data.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining