机器学习-监督学习技术在网球运动员数据集分析中的应用

M. Khder, S. Fujo
{"title":"机器学习-监督学习技术在网球运动员数据集分析中的应用","authors":"M. Khder, S. Fujo","doi":"10.15849/ijasca.221128.13","DOIUrl":null,"url":null,"abstract":"Abstract ATP Tennis stands for the “The Association of Tennis Professionals” which is the primary governing body for male tennis players. ATP was formed in Sep 1972 for professional tennis players. A study has been done on tennis players’ datasets to implement supervised machine learning techniques to illustrate match data and make predictions. An appropriate dataset has been chosen, data cleaning has been implemented to extract anomalies, data is visualized via plotting methods in R language and supervised machine learning models applied. The main models applied are linear regression and decision tree. Results and predictions have been extracted from the applied models. In the linear regression model, the correlation is calculated to find the relation between dependent and independent variables, furthermore the results and prediction are extracted from the linear regression model. Also, three hypotheses are applied for multiple linear regression model. The decision tree modeled the best of 3 or best of 5 sets of matches and predicted which set of matches would be considered best. Keywords: Machine Learning, supervised learning, linear regression, decision tree, R language, Tennis, ATP.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Machine Learning- Supervised Learning Techniques for Tennis Players Dataset Analysis\",\"authors\":\"M. Khder, S. Fujo\",\"doi\":\"10.15849/ijasca.221128.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract ATP Tennis stands for the “The Association of Tennis Professionals” which is the primary governing body for male tennis players. ATP was formed in Sep 1972 for professional tennis players. A study has been done on tennis players’ datasets to implement supervised machine learning techniques to illustrate match data and make predictions. An appropriate dataset has been chosen, data cleaning has been implemented to extract anomalies, data is visualized via plotting methods in R language and supervised machine learning models applied. The main models applied are linear regression and decision tree. Results and predictions have been extracted from the applied models. In the linear regression model, the correlation is calculated to find the relation between dependent and independent variables, furthermore the results and prediction are extracted from the linear regression model. Also, three hypotheses are applied for multiple linear regression model. The decision tree modeled the best of 3 or best of 5 sets of matches and predicted which set of matches would be considered best. Keywords: Machine Learning, supervised learning, linear regression, decision tree, R language, Tennis, ATP.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.221128.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.221128.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

ATP网球代表“职业网球协会”,是男子网球运动员的主要管理机构。ATP成立于1972年9月,为职业网球运动员服务。对网球运动员的数据集进行了一项研究,以实施监督机器学习技术来说明比赛数据并进行预测。选择了合适的数据集,实施了数据清洗以提取异常,通过R语言的绘图方法和应用的监督机器学习模型将数据可视化。应用的主要模型是线性回归和决策树。从应用的模型中提取了结果和预测。在线性回归模型中,通过计算相关性来找到因变量和自变量之间的关系,并从线性回归模型中提取结果和预测。并对多元线性回归模型进行了三个假设。决策树对3组最佳或5组最佳的匹配进行建模,并预测哪组匹配将被认为是最佳的。关键词:机器学习,监督学习,线性回归,决策树,R语言,网球,ATP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Machine Learning- Supervised Learning Techniques for Tennis Players Dataset Analysis
Abstract ATP Tennis stands for the “The Association of Tennis Professionals” which is the primary governing body for male tennis players. ATP was formed in Sep 1972 for professional tennis players. A study has been done on tennis players’ datasets to implement supervised machine learning techniques to illustrate match data and make predictions. An appropriate dataset has been chosen, data cleaning has been implemented to extract anomalies, data is visualized via plotting methods in R language and supervised machine learning models applied. The main models applied are linear regression and decision tree. Results and predictions have been extracted from the applied models. In the linear regression model, the correlation is calculated to find the relation between dependent and independent variables, furthermore the results and prediction are extracted from the linear regression model. Also, three hypotheses are applied for multiple linear regression model. The decision tree modeled the best of 3 or best of 5 sets of matches and predicted which set of matches would be considered best. Keywords: Machine Learning, supervised learning, linear regression, decision tree, R language, Tennis, ATP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Soft Computing and its Applications
International Journal of Advances in Soft Computing and its Applications Computer Science-Computer Science Applications
CiteScore
3.30
自引率
0.00%
发文量
31
期刊介绍: The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.
期刊最新文献
Insider Threat Prevention in the US Banking System Cybersecurity Strategies for Safeguarding Customer’s Data and Preventing Financial Fraud in the United States Financial Sectors Multilevel Thresholding Image Segmentation Based-Logarithm Decreasing Inertia Weight Particle Swarm Optimization Improvement on I-Devices Using L-GCNN Classifier for Smart Mosque Simulation Supervised Learning Algorithms for Predicting Customer Churn with Hyperparameter Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1