{"title":"具有导电边界条件的两层空腔逆散射的分解方法","authors":"Jianguo Ye, G. Yan","doi":"10.1093/imamat/hxac005","DOIUrl":null,"url":null,"abstract":"\n In this paper we consider the inverse scattering problem of determining the shape of a two-layered cavity with conductive boundary condition from sources and measurements placed on a curve inside the cavity. First, we show the well-posedness of the direct scattering problem by using the boundary integral equation method. Then, we prove that the factorization method can be applied to reconstruct the interface of the two-layered cavity from near-field data. Some numerical experiments are also presented to demonstrate the feasibility and effectiveness of the factorization method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The factorization method for inverse scattering by a two-layered cavity with conductive boundary condition\",\"authors\":\"Jianguo Ye, G. Yan\",\"doi\":\"10.1093/imamat/hxac005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper we consider the inverse scattering problem of determining the shape of a two-layered cavity with conductive boundary condition from sources and measurements placed on a curve inside the cavity. First, we show the well-posedness of the direct scattering problem by using the boundary integral equation method. Then, we prove that the factorization method can be applied to reconstruct the interface of the two-layered cavity from near-field data. Some numerical experiments are also presented to demonstrate the feasibility and effectiveness of the factorization method.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imamat/hxac005\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxac005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The factorization method for inverse scattering by a two-layered cavity with conductive boundary condition
In this paper we consider the inverse scattering problem of determining the shape of a two-layered cavity with conductive boundary condition from sources and measurements placed on a curve inside the cavity. First, we show the well-posedness of the direct scattering problem by using the boundary integral equation method. Then, we prove that the factorization method can be applied to reconstruct the interface of the two-layered cavity from near-field data. Some numerical experiments are also presented to demonstrate the feasibility and effectiveness of the factorization method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.