比例反向危险率模型下两种抽样方案估计应力强度可靠性的比较

A. Sadeghpour, A. Nezakati, M. Salehi
{"title":"比例反向危险率模型下两种抽样方案估计应力强度可靠性的比较","authors":"A. Sadeghpour, A. Nezakati, M. Salehi","doi":"10.19139/SOIC-2310-5070-781","DOIUrl":null,"url":null,"abstract":"In this paper, point and interval estimation of stress-strength reliability based on lower record ranked set sampling (RRSS) scheme under the proportional reversed hazard rate model are considered. Maximum likelihood, uniformly minimum variance unbiased estimator, and Bayesian estimators of R are derived. Also, we compared this point estimators with their counterparts obtained by well-known sampling scheme in record values known as inverse sampling scheme. Various confidence intervals for the parameter R are constructed, and compared based on the simulation study. Moreover, the RRSS scheme is compared with ordinary records in case of interval estimations. We observed that our proposed point and interval estimations perform well in the estimation of R based on RRSS. We also proved that all calculations do not depend on the baseline distribution in the proportional reversed hazard rate model. Finally, a data set has been analyzed for illustrative purposes.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"9 1","pages":"82-98"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison of two sampling schemes in estimating the stress-strength reliability under the proportional reversed hazard rate model\",\"authors\":\"A. Sadeghpour, A. Nezakati, M. Salehi\",\"doi\":\"10.19139/SOIC-2310-5070-781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, point and interval estimation of stress-strength reliability based on lower record ranked set sampling (RRSS) scheme under the proportional reversed hazard rate model are considered. Maximum likelihood, uniformly minimum variance unbiased estimator, and Bayesian estimators of R are derived. Also, we compared this point estimators with their counterparts obtained by well-known sampling scheme in record values known as inverse sampling scheme. Various confidence intervals for the parameter R are constructed, and compared based on the simulation study. Moreover, the RRSS scheme is compared with ordinary records in case of interval estimations. We observed that our proposed point and interval estimations perform well in the estimation of R based on RRSS. We also proved that all calculations do not depend on the baseline distribution in the proportional reversed hazard rate model. Finally, a data set has been analyzed for illustrative purposes.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"9 1\",\"pages\":\"82-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/SOIC-2310-5070-781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文考虑了在比例反向危险率模型下,基于低记录排序集抽样(RRSS)方案的应力强度可靠性的点和区间估计。推导了R的最大似然、一致最小方差无偏估计量和贝叶斯估计量。此外,我们还将该点估计量与通过已知的采样方案在记录值中获得的点估计量(称为逆采样方案)进行了比较。构造了参数R的各种置信区间,并在仿真研究的基础上进行了比较。此外,在区间估计的情况下,将RRSS方案与普通记录进行了比较。我们观察到,我们提出的点和区间估计在基于RRSS的R估计中表现良好。我们还证明,在比例反向危险率模型中,所有计算都不依赖于基线分布。最后,为了便于说明,对数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of two sampling schemes in estimating the stress-strength reliability under the proportional reversed hazard rate model
In this paper, point and interval estimation of stress-strength reliability based on lower record ranked set sampling (RRSS) scheme under the proportional reversed hazard rate model are considered. Maximum likelihood, uniformly minimum variance unbiased estimator, and Bayesian estimators of R are derived. Also, we compared this point estimators with their counterparts obtained by well-known sampling scheme in record values known as inverse sampling scheme. Various confidence intervals for the parameter R are constructed, and compared based on the simulation study. Moreover, the RRSS scheme is compared with ordinary records in case of interval estimations. We observed that our proposed point and interval estimations perform well in the estimation of R based on RRSS. We also proved that all calculations do not depend on the baseline distribution in the proportional reversed hazard rate model. Finally, a data set has been analyzed for illustrative purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1