P. Meenal, P. Gowr, A. Ram, A. Rajini, B. Abishek, D. Ravikumar
{"title":"基于支持向量机的糖尿病视网膜病变自动检测","authors":"P. Meenal, P. Gowr, A. Ram, A. Rajini, B. Abishek, D. Ravikumar","doi":"10.1166/JCTN.2020.9456","DOIUrl":null,"url":null,"abstract":"Excess amount of insulin in human blood might affect the retina in eyes and cause abnormalities in human vision, which is generally termed as Diabetic Retinopathy (DR). Many diabetic patients are often saved by the earlier diagnosis of Diabetic Retinopathy. The surface of retinal layer\n that has the earlier signs of Diabetic Retinopathy. This type of abnormalities are detected using traditional image processing methods which includes stages such as capturing fundus images, preprocessing, feature extraction and finally classification is performed to classify it as retinal\n and healthy images. (The proposed system, this detection is completed by Fuzzy-C Means (FCM) clustering). The proposed automated system consists of four phases which includes, preprocessing of the captured fundus images in which the image is resized and the second stage involves CLAHE. Images\n has to enhanced in order to boost up the features for which Contrast adjustment is performed in the third phase and before classification the grey and green channels of the images are extracted from the processed images. This detection process provides better results than the prevailing method.\n SVM classifier has been used in the proposed framework which classified the malady level of diabetic retinopathy in eye. The proposed system manages to provide better classification rates compared to the previous methodologies. The accuracy, sensitivity and specificity of the developed automated\n system was found to be 94.4%, 100% and 85.7%, which was promising than the compared methods.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"17 1","pages":"5582-5589"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Detection of Diabetic Retinopathy Using Support Vector Machine\",\"authors\":\"P. Meenal, P. Gowr, A. Ram, A. Rajini, B. Abishek, D. Ravikumar\",\"doi\":\"10.1166/JCTN.2020.9456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excess amount of insulin in human blood might affect the retina in eyes and cause abnormalities in human vision, which is generally termed as Diabetic Retinopathy (DR). Many diabetic patients are often saved by the earlier diagnosis of Diabetic Retinopathy. The surface of retinal layer\\n that has the earlier signs of Diabetic Retinopathy. This type of abnormalities are detected using traditional image processing methods which includes stages such as capturing fundus images, preprocessing, feature extraction and finally classification is performed to classify it as retinal\\n and healthy images. (The proposed system, this detection is completed by Fuzzy-C Means (FCM) clustering). The proposed automated system consists of four phases which includes, preprocessing of the captured fundus images in which the image is resized and the second stage involves CLAHE. Images\\n has to enhanced in order to boost up the features for which Contrast adjustment is performed in the third phase and before classification the grey and green channels of the images are extracted from the processed images. This detection process provides better results than the prevailing method.\\n SVM classifier has been used in the proposed framework which classified the malady level of diabetic retinopathy in eye. The proposed system manages to provide better classification rates compared to the previous methodologies. The accuracy, sensitivity and specificity of the developed automated\\n system was found to be 94.4%, 100% and 85.7%, which was promising than the compared methods.\",\"PeriodicalId\":15416,\"journal\":{\"name\":\"Journal of Computational and Theoretical Nanoscience\",\"volume\":\"17 1\",\"pages\":\"5582-5589\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Nanoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/JCTN.2020.9456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2020.9456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Automatic Detection of Diabetic Retinopathy Using Support Vector Machine
Excess amount of insulin in human blood might affect the retina in eyes and cause abnormalities in human vision, which is generally termed as Diabetic Retinopathy (DR). Many diabetic patients are often saved by the earlier diagnosis of Diabetic Retinopathy. The surface of retinal layer
that has the earlier signs of Diabetic Retinopathy. This type of abnormalities are detected using traditional image processing methods which includes stages such as capturing fundus images, preprocessing, feature extraction and finally classification is performed to classify it as retinal
and healthy images. (The proposed system, this detection is completed by Fuzzy-C Means (FCM) clustering). The proposed automated system consists of four phases which includes, preprocessing of the captured fundus images in which the image is resized and the second stage involves CLAHE. Images
has to enhanced in order to boost up the features for which Contrast adjustment is performed in the third phase and before classification the grey and green channels of the images are extracted from the processed images. This detection process provides better results than the prevailing method.
SVM classifier has been used in the proposed framework which classified the malady level of diabetic retinopathy in eye. The proposed system manages to provide better classification rates compared to the previous methodologies. The accuracy, sensitivity and specificity of the developed automated
system was found to be 94.4%, 100% and 85.7%, which was promising than the compared methods.