光电二极管传感器用作剂量计性能的初步研究

Y. Radzi, N. Zulkafli, A. Omar
{"title":"光电二极管传感器用作剂量计性能的初步研究","authors":"Y. Radzi, N. Zulkafli, A. Omar","doi":"10.24931/2413-9432-2021-10-1-4-10","DOIUrl":null,"url":null,"abstract":"Radiation dosimetry in the health and medicine field is crucial to ensure there is no unnecessary ionizing radiation exposure to patients and personnel. While various types of semiconductor dosimeters are available, photodiode sensors are seen as a reliable and cost-effective immediate dosimeter. This study investigates the capabilities of a monolithic photodiode with an on-chip trans-impedance amplifier as a dosimeter in diagnostic radiology. A photodiode sensor covered with black insulation tape is irradiated with the diagnostic x-ray of potential in range between 40 to 90 kV with constant tube current-time product of 50 mAs at 60 cm source-to-detector distance (SDD). Exposures of different tube current at the range of 10 to 250 mA with a constant tube voltage of 70 kVp at the same setup are made. The photodiode sensor connected to the electrometer gives out readings in the millivolt (mV), and the output of the photodiode and semiconductor detector is recorded. The photodiode’s energy dependency, reproducibility, dose response, and distance dependency were evaluated as the capabilities of the photodiode to be used as a dosimeter. For energy dependency, it shows a linearity of 0.9458, while the response to increasing tube current with a constant tube voltage shows the R2 of 0.912. The photodiode shows good dependency on the tube voltage and tube current. Other than that, it also showed a linear coefficient of 0.5138 for distance dependence which is considered as a good linearity fit value for a photodiode as initial performance. However, its reproducibility is poor due to its large capacitance. This monolithic photodiode with an on-chip trans-impedance amplifier has demonstrated good results for energy dependency but poor results for reproducibility. However, the photodiode can be improvised in the future to ensure it is suitable as a dosimeter.","PeriodicalId":37713,"journal":{"name":"Biomedical Photonics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preliminary investigation on performance of photodiode sensor as a dosimeter\",\"authors\":\"Y. Radzi, N. Zulkafli, A. Omar\",\"doi\":\"10.24931/2413-9432-2021-10-1-4-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiation dosimetry in the health and medicine field is crucial to ensure there is no unnecessary ionizing radiation exposure to patients and personnel. While various types of semiconductor dosimeters are available, photodiode sensors are seen as a reliable and cost-effective immediate dosimeter. This study investigates the capabilities of a monolithic photodiode with an on-chip trans-impedance amplifier as a dosimeter in diagnostic radiology. A photodiode sensor covered with black insulation tape is irradiated with the diagnostic x-ray of potential in range between 40 to 90 kV with constant tube current-time product of 50 mAs at 60 cm source-to-detector distance (SDD). Exposures of different tube current at the range of 10 to 250 mA with a constant tube voltage of 70 kVp at the same setup are made. The photodiode sensor connected to the electrometer gives out readings in the millivolt (mV), and the output of the photodiode and semiconductor detector is recorded. The photodiode’s energy dependency, reproducibility, dose response, and distance dependency were evaluated as the capabilities of the photodiode to be used as a dosimeter. For energy dependency, it shows a linearity of 0.9458, while the response to increasing tube current with a constant tube voltage shows the R2 of 0.912. The photodiode shows good dependency on the tube voltage and tube current. Other than that, it also showed a linear coefficient of 0.5138 for distance dependence which is considered as a good linearity fit value for a photodiode as initial performance. However, its reproducibility is poor due to its large capacitance. This monolithic photodiode with an on-chip trans-impedance amplifier has demonstrated good results for energy dependency but poor results for reproducibility. However, the photodiode can be improvised in the future to ensure it is suitable as a dosimeter.\",\"PeriodicalId\":37713,\"journal\":{\"name\":\"Biomedical Photonics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24931/2413-9432-2021-10-1-4-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24931/2413-9432-2021-10-1-4-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

卫生和医学领域的辐射剂量测定对于确保患者和人员没有不必要的电离辐射暴露至关重要。虽然有各种类型的半导体剂量计,但光电二极管传感器被视为一种可靠且具有成本效益的即时剂量计。本研究调查了带有片上跨阻抗放大器的单片光电二极管作为放射诊断剂量计的能力。覆盖有黑色绝缘带的光电二极管传感器用诊断x射线照射,该诊断x射线的电势范围在40至90 kV之间,恒定管电流时间乘积为50 mAs,源到探测器的距离为60 cm(SDD)。在相同设置下,在70kVp的恒定管电压下,在10至250mA的范围内暴露不同的管电流。连接到静电计的光电二极管传感器以毫伏(mV)为单位给出读数,并记录光电二极管和半导体检测器的输出。光电二极管的能量依赖性、再现性、剂量响应和距离依赖性被评估为光电二极管用作剂量计的能力。对于能量依赖性,它显示出0.9458的线性,而在恒定管电压下对增加管电流的响应显示出0.912的R2。光电二极管显示出对管电压和管电流的良好依赖性。除此之外,它还显示出距离依赖性的线性系数为0.5138,这被认为是光电二极管作为初始性能的良好线性拟合值。然而,由于其大电容,其再现性较差。这种具有片上跨阻抗放大器的单片光电二极管在能量依赖性方面表现出良好的结果,但在再现性方面表现不佳。然而,光电二极管可以在未来临时制作,以确保它适合用作剂量计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary investigation on performance of photodiode sensor as a dosimeter
Radiation dosimetry in the health and medicine field is crucial to ensure there is no unnecessary ionizing radiation exposure to patients and personnel. While various types of semiconductor dosimeters are available, photodiode sensors are seen as a reliable and cost-effective immediate dosimeter. This study investigates the capabilities of a monolithic photodiode with an on-chip trans-impedance amplifier as a dosimeter in diagnostic radiology. A photodiode sensor covered with black insulation tape is irradiated with the diagnostic x-ray of potential in range between 40 to 90 kV with constant tube current-time product of 50 mAs at 60 cm source-to-detector distance (SDD). Exposures of different tube current at the range of 10 to 250 mA with a constant tube voltage of 70 kVp at the same setup are made. The photodiode sensor connected to the electrometer gives out readings in the millivolt (mV), and the output of the photodiode and semiconductor detector is recorded. The photodiode’s energy dependency, reproducibility, dose response, and distance dependency were evaluated as the capabilities of the photodiode to be used as a dosimeter. For energy dependency, it shows a linearity of 0.9458, while the response to increasing tube current with a constant tube voltage shows the R2 of 0.912. The photodiode shows good dependency on the tube voltage and tube current. Other than that, it also showed a linear coefficient of 0.5138 for distance dependence which is considered as a good linearity fit value for a photodiode as initial performance. However, its reproducibility is poor due to its large capacitance. This monolithic photodiode with an on-chip trans-impedance amplifier has demonstrated good results for energy dependency but poor results for reproducibility. However, the photodiode can be improvised in the future to ensure it is suitable as a dosimeter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Photonics
Biomedical Photonics Medicine-Surgery
CiteScore
1.80
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊介绍: The main goal of the journal – to promote the development of Russian biomedical photonics and implementation of its advances into medical practice. The primary objectives: - Presentation of up-to-date results of scientific and in research and scientific and practical (clinical and experimental) activity in the field of biomedical photonics. - Development of united Russian media for integration of knowledge and experience of scientists and practitioners in this field. - Distribution of best practices in laser medicine to regions. - Keeping the clinicians informed about new methods and devices for laser medicine - Approval of investigations of Ph.D candidates and applicants.
期刊最新文献
Photodynamic therapy in the treatment of HPV-associated cervical cancer: mechanisms, challenges and future prospects Photodynamic therapy of leukoplakia of the oral mucosa: experience of using method in 223 patients Photodynamic therapy in treatment of squamous cell carcinoma of oral cavity with chlorine e6 photosensitizer with long-term follow up Effects of silver nanoparticle and low-level laser on the immune response and healing of albino mice skin wounds Effectiveness of 650 nm red laser photobiomodulation therapy to accelerate wound healing post tooth extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1