{"title":"生物胶粘剂在生物医学中的应用综述","authors":"A. Dey, Proma Bhattacharya, S. Neogi","doi":"10.7569/raa.2020.097308","DOIUrl":null,"url":null,"abstract":"The necessity for a long time contact between the drug and mucus layer/epithelial cell or a combination of the two requires a bioadhesive. A bioadhesive is known to intensify contact between the two and help in controlled release of drugs. The conventionally used bioadhesives are known\n to have poor adhesion strength and can have toxic side effects. This review focuses on the various types of polymers and their composites for use as bioadhesives which can overcome the previously mentioned issues. These include some naturally occurring bioadhesives such as collagen, chitosan,\n albumin, dextran and some synthetic bioadhesives like gelatin, poly(ethylene glycol), poly(acrylic acid), poly(lactic-co-glycolic acid) based bioadhesives. The clinical trials prove the effectiveness of these bioadhesives and they are found to be more efficient than the commercial glues and\n hence possess great potential for use in the biomedical industry.","PeriodicalId":43792,"journal":{"name":"Reviews of Adhesion and Adhesives","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bioadhesives in Biomedical Applications: A Critical Review\",\"authors\":\"A. Dey, Proma Bhattacharya, S. Neogi\",\"doi\":\"10.7569/raa.2020.097308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The necessity for a long time contact between the drug and mucus layer/epithelial cell or a combination of the two requires a bioadhesive. A bioadhesive is known to intensify contact between the two and help in controlled release of drugs. The conventionally used bioadhesives are known\\n to have poor adhesion strength and can have toxic side effects. This review focuses on the various types of polymers and their composites for use as bioadhesives which can overcome the previously mentioned issues. These include some naturally occurring bioadhesives such as collagen, chitosan,\\n albumin, dextran and some synthetic bioadhesives like gelatin, poly(ethylene glycol), poly(acrylic acid), poly(lactic-co-glycolic acid) based bioadhesives. The clinical trials prove the effectiveness of these bioadhesives and they are found to be more efficient than the commercial glues and\\n hence possess great potential for use in the biomedical industry.\",\"PeriodicalId\":43792,\"journal\":{\"name\":\"Reviews of Adhesion and Adhesives\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Adhesion and Adhesives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7569/raa.2020.097308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Adhesion and Adhesives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7569/raa.2020.097308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Bioadhesives in Biomedical Applications: A Critical Review
The necessity for a long time contact between the drug and mucus layer/epithelial cell or a combination of the two requires a bioadhesive. A bioadhesive is known to intensify contact between the two and help in controlled release of drugs. The conventionally used bioadhesives are known
to have poor adhesion strength and can have toxic side effects. This review focuses on the various types of polymers and their composites for use as bioadhesives which can overcome the previously mentioned issues. These include some naturally occurring bioadhesives such as collagen, chitosan,
albumin, dextran and some synthetic bioadhesives like gelatin, poly(ethylene glycol), poly(acrylic acid), poly(lactic-co-glycolic acid) based bioadhesives. The clinical trials prove the effectiveness of these bioadhesives and they are found to be more efficient than the commercial glues and
hence possess great potential for use in the biomedical industry.
期刊介绍:
With the explosion of research activity and reports, the need for concise and critical reviews of topics of contemporary research interest is manifest. Reviews of Adhesion and Adhesives (RAA) provides in-depth, incisive, illuminating and thought-provoking reviews written by subject matter experts covering all aspects of adhesion science and adhesive technology. Each review will be imbued with the author’s experience so that the reader will be able to assimilate the research in the area discussed easily and will be able to apply it in practice.The journal has relevance to a myriad of industries including textiles, printing, coatings, aerospace, medical, nanotechnology, biotechnology, building and construction, and microelectronics. The topics to be covered include, but not limited to, basic and theoretical aspects of adhesion; modeling of adhesion phenomena; mecha¬nisms of adhesion; surface and interfacial analysis and characterization; unraveling of events at interfaces; characterization of interphases; adhesion of thin films and coatings; adhesion aspects in reinforced composites; formation, characterization and durability of adhesive joints; surface preparation methods; polymer surface modification; biological adhesion; particle adhesion; adhesion of metallized plastics; adhesion of diamond-like films; adhesion pro¬moters; contact angle, wettability· and adhesion; superhydrophobicity and superhydrophilicity. With regard to adhesives, RAA will include, but not limited to, green adhesives; novel and high-performance adhesives; and medical adhesive applications.