煤油和天然气预混双燃料燃烧器火焰动力学的比较

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-03-01 DOI:10.1177/17568277221091405
J. Kaufmann, M. Vogel, Jannes Papenbrock, T. Sattelmayer
{"title":"煤油和天然气预混双燃料燃烧器火焰动力学的比较","authors":"J. Kaufmann, M. Vogel, Jannes Papenbrock, T. Sattelmayer","doi":"10.1177/17568277221091405","DOIUrl":null,"url":null,"abstract":"In this study, the flame dynamics of swirl stabilized lean premixed combustion is investigated for kerosene and natural gas operation. A natural gas swirl burner is retrofitted with a twin-fluid nozzle to allow performing all experiments with the identical burner hardware. The mixture preparation complexity is stepwise increased from perfectly premixed natural gas to technically premixed natural gas and lastly technically premixed kerosene combustion. Flame transfer functions (FTFs) for the three configurations are presented and compared with each other. This approach allows to experimentally decompose the FTF and isolate the contributions of equivalence ratio fluctuations and droplet dynamics. Furthermore, FTF data for a systematic variation of equivalence ratio and air mass flow in kerosene operation is presented and the impact of spray quality and convective delay time on the FTF is discussed. For all operation points, stationary flame images are provided and evaluated as basis for the FTF interpretation. Additionally, NO emissions are measured in order to determine the degree of premixing in kerosene operation. Through a systematic FTF comparison, it was found that the frequency range in which droplets react to acoustic forcing can be read from the FTF phase. The spray quality was found to have a significant impact on the FTF whereas a change in the convective delay time does not affect the FTF.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of the flame dynamics of a premixed dual fuel burner for kerosene and natural gas\",\"authors\":\"J. Kaufmann, M. Vogel, Jannes Papenbrock, T. Sattelmayer\",\"doi\":\"10.1177/17568277221091405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the flame dynamics of swirl stabilized lean premixed combustion is investigated for kerosene and natural gas operation. A natural gas swirl burner is retrofitted with a twin-fluid nozzle to allow performing all experiments with the identical burner hardware. The mixture preparation complexity is stepwise increased from perfectly premixed natural gas to technically premixed natural gas and lastly technically premixed kerosene combustion. Flame transfer functions (FTFs) for the three configurations are presented and compared with each other. This approach allows to experimentally decompose the FTF and isolate the contributions of equivalence ratio fluctuations and droplet dynamics. Furthermore, FTF data for a systematic variation of equivalence ratio and air mass flow in kerosene operation is presented and the impact of spray quality and convective delay time on the FTF is discussed. For all operation points, stationary flame images are provided and evaluated as basis for the FTF interpretation. Additionally, NO emissions are measured in order to determine the degree of premixing in kerosene operation. Through a systematic FTF comparison, it was found that the frequency range in which droplets react to acoustic forcing can be read from the FTF phase. The spray quality was found to have a significant impact on the FTF whereas a change in the convective delay time does not affect the FTF.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568277221091405\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277221091405","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,研究了煤油和天然气运行中旋流稳定稀薄预混燃烧的火焰动力学。天然气旋流燃烧器采用双流体喷嘴进行改造,以使用相同的燃烧器硬件进行所有实验。混合物制备的复杂性从完全预混的天然气逐步增加到技术上预混的自然气,最后是技术上预混合的煤油燃烧。给出了三种构型的火焰传递函数,并进行了比较。这种方法允许通过实验分解FTF,并隔离当量比波动和液滴动力学的影响。此外,还提供了煤油操作中当量比和空气质量流量系统变化的FTF数据,并讨论了喷雾质量和对流延迟时间对FTF的影响。对于所有操作点,提供并评估静止火焰图像,作为FTF解释的基础。此外,还测量了NO排放量,以确定煤油操作中的预混合程度。通过系统的FTF比较,发现液滴对声强迫反应的频率范围可以从FTF相位读取。发现喷雾质量对FTF有显著影响,而对流延迟时间的变化不影响FTF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of the flame dynamics of a premixed dual fuel burner for kerosene and natural gas
In this study, the flame dynamics of swirl stabilized lean premixed combustion is investigated for kerosene and natural gas operation. A natural gas swirl burner is retrofitted with a twin-fluid nozzle to allow performing all experiments with the identical burner hardware. The mixture preparation complexity is stepwise increased from perfectly premixed natural gas to technically premixed natural gas and lastly technically premixed kerosene combustion. Flame transfer functions (FTFs) for the three configurations are presented and compared with each other. This approach allows to experimentally decompose the FTF and isolate the contributions of equivalence ratio fluctuations and droplet dynamics. Furthermore, FTF data for a systematic variation of equivalence ratio and air mass flow in kerosene operation is presented and the impact of spray quality and convective delay time on the FTF is discussed. For all operation points, stationary flame images are provided and evaluated as basis for the FTF interpretation. Additionally, NO emissions are measured in order to determine the degree of premixing in kerosene operation. Through a systematic FTF comparison, it was found that the frequency range in which droplets react to acoustic forcing can be read from the FTF phase. The spray quality was found to have a significant impact on the FTF whereas a change in the convective delay time does not affect the FTF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1