{"title":"基于残差法的迭代纯化过程非努力响应检测","authors":"Yue Liu, Hongyun Liu","doi":"10.3102/1076998621994366","DOIUrl":null,"url":null,"abstract":"The prevalence and serious consequences of noneffortful responses from unmotivated examinees are well-known in educational measurement. In this study, we propose to apply an iterative purification process based on a response time residual method with fixed item parameter estimates to detect noneffortful responses. The proposed method is compared with the traditional residual method and noniterative method with fixed item parameters in two simulation studies in terms of noneffort detection accuracy and parameter recovery. The results show that when severity of noneffort is high, the proposed method leads to a much higher true positive rate with a small increase of false discovery rate. In addition, parameter estimation is significantly improved by the strategies of fixing item parameters and iteratively cleansing. These results suggest that the proposed method is a potential solution to reduce the impact of data contamination due to severe low test-taking effort and to obtain more accurate parameter estimates. An empirical study is also conducted to show the differences in the detection rate and parameter estimates among different approaches.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"46 1","pages":"717 - 752"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detecting Noneffortful Responses Based on a Residual Method Using an Iterative Purification Process\",\"authors\":\"Yue Liu, Hongyun Liu\",\"doi\":\"10.3102/1076998621994366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence and serious consequences of noneffortful responses from unmotivated examinees are well-known in educational measurement. In this study, we propose to apply an iterative purification process based on a response time residual method with fixed item parameter estimates to detect noneffortful responses. The proposed method is compared with the traditional residual method and noniterative method with fixed item parameters in two simulation studies in terms of noneffort detection accuracy and parameter recovery. The results show that when severity of noneffort is high, the proposed method leads to a much higher true positive rate with a small increase of false discovery rate. In addition, parameter estimation is significantly improved by the strategies of fixing item parameters and iteratively cleansing. These results suggest that the proposed method is a potential solution to reduce the impact of data contamination due to severe low test-taking effort and to obtain more accurate parameter estimates. An empirical study is also conducted to show the differences in the detection rate and parameter estimates among different approaches.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"46 1\",\"pages\":\"717 - 752\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/1076998621994366\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/1076998621994366","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Detecting Noneffortful Responses Based on a Residual Method Using an Iterative Purification Process
The prevalence and serious consequences of noneffortful responses from unmotivated examinees are well-known in educational measurement. In this study, we propose to apply an iterative purification process based on a response time residual method with fixed item parameter estimates to detect noneffortful responses. The proposed method is compared with the traditional residual method and noniterative method with fixed item parameters in two simulation studies in terms of noneffort detection accuracy and parameter recovery. The results show that when severity of noneffort is high, the proposed method leads to a much higher true positive rate with a small increase of false discovery rate. In addition, parameter estimation is significantly improved by the strategies of fixing item parameters and iteratively cleansing. These results suggest that the proposed method is a potential solution to reduce the impact of data contamination due to severe low test-taking effort and to obtain more accurate parameter estimates. An empirical study is also conducted to show the differences in the detection rate and parameter estimates among different approaches.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.