{"title":"计算火焰与流体动力学的最大似然集合滤波器","authors":"Yijun Wang;Stephen Guzik;Milija Zupanski;Xinfeng Gao","doi":"10.1093/imamat/hxab010","DOIUrl":null,"url":null,"abstract":"The numerical solution of partial differential equations that govern fluid dynamics with turbulence and combustion is challenging due to the multiscale nature of the dynamical system and the need to resolve small-scale physical features. In addition, the uncertainties in the dynamical system, including those in the physical models and parameters, initial and boundary conditions and numerical methods, impact the computational fluid dynamics (CFD) prediction of turbulence and chemical reactions. To improve the CFD prediction, this study focuses on the development and application of a maximum likelihood ensemble filter (MLEF), an ensemble-based data assimilation (DA), for flows featuring combustion and/or turbulence. MLEF finds the optimal analysis and its uncertainty by maximizing the posterior probability density function. The novelty of the study lies in the combination of advanced DA and CFD methods for a new comprehensive application to predict engineering fluid dynamics. The study combines important aspects, including an ensemble-based DA with analysis and uncertainty estimation, an augmented control vector that simultaneously adjusts initial conditions and model empirical parameters and an application of DA to CFD modeling of combustion and flows with complex geometry. The DA performance is validated by a turbulent Couette flow. The new CFD–DA system is then applied to solve the time-evolving shear-layer mixing with methane-air combustion and the turbulent flow over a bluff-body geometry. Results demonstrate the improvement of estimates of model parameters and the uncertainty reduction in initial conditions (ICs) for CFD modeling of flames and flows by the MLEF method.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 1","pages":"631-661"},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imamat/hxab010","citationCount":"1","resultStr":"{\"title\":\"The maximum likelihood ensemble filter for computational flame and fluid dynamics\",\"authors\":\"Yijun Wang;Stephen Guzik;Milija Zupanski;Xinfeng Gao\",\"doi\":\"10.1093/imamat/hxab010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical solution of partial differential equations that govern fluid dynamics with turbulence and combustion is challenging due to the multiscale nature of the dynamical system and the need to resolve small-scale physical features. In addition, the uncertainties in the dynamical system, including those in the physical models and parameters, initial and boundary conditions and numerical methods, impact the computational fluid dynamics (CFD) prediction of turbulence and chemical reactions. To improve the CFD prediction, this study focuses on the development and application of a maximum likelihood ensemble filter (MLEF), an ensemble-based data assimilation (DA), for flows featuring combustion and/or turbulence. MLEF finds the optimal analysis and its uncertainty by maximizing the posterior probability density function. The novelty of the study lies in the combination of advanced DA and CFD methods for a new comprehensive application to predict engineering fluid dynamics. The study combines important aspects, including an ensemble-based DA with analysis and uncertainty estimation, an augmented control vector that simultaneously adjusts initial conditions and model empirical parameters and an application of DA to CFD modeling of combustion and flows with complex geometry. The DA performance is validated by a turbulent Couette flow. The new CFD–DA system is then applied to solve the time-evolving shear-layer mixing with methane-air combustion and the turbulent flow over a bluff-body geometry. Results demonstrate the improvement of estimates of model parameters and the uncertainty reduction in initial conditions (ICs) for CFD modeling of flames and flows by the MLEF method.\",\"PeriodicalId\":56297,\"journal\":{\"name\":\"IMA Journal of Applied Mathematics\",\"volume\":\"86 1\",\"pages\":\"631-661\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imamat/hxab010\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9514753/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514753/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The maximum likelihood ensemble filter for computational flame and fluid dynamics
The numerical solution of partial differential equations that govern fluid dynamics with turbulence and combustion is challenging due to the multiscale nature of the dynamical system and the need to resolve small-scale physical features. In addition, the uncertainties in the dynamical system, including those in the physical models and parameters, initial and boundary conditions and numerical methods, impact the computational fluid dynamics (CFD) prediction of turbulence and chemical reactions. To improve the CFD prediction, this study focuses on the development and application of a maximum likelihood ensemble filter (MLEF), an ensemble-based data assimilation (DA), for flows featuring combustion and/or turbulence. MLEF finds the optimal analysis and its uncertainty by maximizing the posterior probability density function. The novelty of the study lies in the combination of advanced DA and CFD methods for a new comprehensive application to predict engineering fluid dynamics. The study combines important aspects, including an ensemble-based DA with analysis and uncertainty estimation, an augmented control vector that simultaneously adjusts initial conditions and model empirical parameters and an application of DA to CFD modeling of combustion and flows with complex geometry. The DA performance is validated by a turbulent Couette flow. The new CFD–DA system is then applied to solve the time-evolving shear-layer mixing with methane-air combustion and the turbulent flow over a bluff-body geometry. Results demonstrate the improvement of estimates of model parameters and the uncertainty reduction in initial conditions (ICs) for CFD modeling of flames and flows by the MLEF method.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.