用于非轮廓侧信道攻击检测的卷积神经网络结构设计

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Elektronika Ir Elektrotechnika Pub Date : 2023-09-07 DOI:10.5755/j02.eie.33995
A. A. Ahmed, M Zahid Hasan, S. Islam, A. Aman, Nurhizam Safie
{"title":"用于非轮廓侧信道攻击检测的卷积神经网络结构设计","authors":"A. A. Ahmed, M Zahid Hasan, S. Islam, A. Aman, Nurhizam Safie","doi":"10.5755/j02.eie.33995","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) is a new option that has just been made available for side-channel analysis. DL approaches for profiled side-channel attacks (SCA) have dominated research till now. In this attack, the attacker has complete control over the profiling device and can collect many traces for a range of critical parameters to characterise device leakage before the attack. In this study, we apply DL algorithms to non-profiled data. An attacker can only retrieve a limited number of side-channel traces from a closed device with an unknown key value in non-profiled mode. The authors conducted this research. Key estimations and deep learning measurements can reveal the secret key. We prove that this is doable. This technology is excellent for non-profits. DL and neural networks can benefit these organisations. Neural networks can provide a new technique to verify the safety of hardware cryptographic algorithms. It was recently suggested. This study creates a non-profiled SCA utilising convolutional neural networks (CNNs) on an AVR microcontroller with 8 bits of memory and the AES-128 cryptographic algorithm. We used aligned power traces with several samples to demonstrate how challenging CNN-based SCA is in practise. This will help us reach our goals. Here is another technique to create a solid CNN data set. In particular, CNN-based SCA experiment data and noise effects are examined. These experiments employ power traces with Gaussian noise. The CNN-based SCA works well with our data set for non-profiled attacks. Gaussian noise on power traces causes many more issues. These results show that our method can recover more bytes successfully from SCA compared to other methods in correlation power analysis (CPA) and DL-SCA without regularisation.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of Convolutional Neural Networks Architecture for Non-Profiled Side-Channel Attack Detection\",\"authors\":\"A. A. Ahmed, M Zahid Hasan, S. Islam, A. Aman, Nurhizam Safie\",\"doi\":\"10.5755/j02.eie.33995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) is a new option that has just been made available for side-channel analysis. DL approaches for profiled side-channel attacks (SCA) have dominated research till now. In this attack, the attacker has complete control over the profiling device and can collect many traces for a range of critical parameters to characterise device leakage before the attack. In this study, we apply DL algorithms to non-profiled data. An attacker can only retrieve a limited number of side-channel traces from a closed device with an unknown key value in non-profiled mode. The authors conducted this research. Key estimations and deep learning measurements can reveal the secret key. We prove that this is doable. This technology is excellent for non-profits. DL and neural networks can benefit these organisations. Neural networks can provide a new technique to verify the safety of hardware cryptographic algorithms. It was recently suggested. This study creates a non-profiled SCA utilising convolutional neural networks (CNNs) on an AVR microcontroller with 8 bits of memory and the AES-128 cryptographic algorithm. We used aligned power traces with several samples to demonstrate how challenging CNN-based SCA is in practise. This will help us reach our goals. Here is another technique to create a solid CNN data set. In particular, CNN-based SCA experiment data and noise effects are examined. These experiments employ power traces with Gaussian noise. The CNN-based SCA works well with our data set for non-profiled attacks. Gaussian noise on power traces causes many more issues. These results show that our method can recover more bytes successfully from SCA compared to other methods in correlation power analysis (CPA) and DL-SCA without regularisation.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.33995\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.33995","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

深度学习(DL)是一种新的选择,刚刚提供给侧通道分析。迄今为止,深度学习方法在侧信道攻击(SCA)研究中占据主导地位。在这种攻击中,攻击者可以完全控制分析设备,并可以在攻击前收集一系列关键参数的许多痕迹,以表征设备泄漏。在本研究中,我们将深度学习算法应用于非剖面数据。在非分析模式下,攻击者只能从具有未知密钥值的封闭设备中检索有限数量的侧信道跟踪。作者进行了这项研究。密钥估计和深度学习测量可以揭示密钥。我们证明这是可行的。这项技术非常适合非营利组织。深度学习和神经网络可以使这些组织受益。神经网络为验证硬件加密算法的安全性提供了一种新的技术。这是最近提出的建议。本研究在具有8位内存和AES-128加密算法的AVR微控制器上使用卷积神经网络(cnn)创建了一个非配置SCA。我们使用对齐的电源走线和几个样本来演示基于cnn的SCA在实践中是多么具有挑战性。这将有助于我们实现目标。下面是另一种创建可靠CNN数据集的技术。特别地,研究了基于cnn的SCA实验数据和噪声效应。这些实验采用带高斯噪声的功率走线。基于cnn的SCA可以很好地处理我们的非分析攻击数据集。电源走线上的高斯噪声会引起更多的问题。这些结果表明,与其他相关功率分析(CPA)和没有正则化的DL-SCA方法相比,我们的方法可以成功地从SCA中恢复更多的字节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Convolutional Neural Networks Architecture for Non-Profiled Side-Channel Attack Detection
Deep learning (DL) is a new option that has just been made available for side-channel analysis. DL approaches for profiled side-channel attacks (SCA) have dominated research till now. In this attack, the attacker has complete control over the profiling device and can collect many traces for a range of critical parameters to characterise device leakage before the attack. In this study, we apply DL algorithms to non-profiled data. An attacker can only retrieve a limited number of side-channel traces from a closed device with an unknown key value in non-profiled mode. The authors conducted this research. Key estimations and deep learning measurements can reveal the secret key. We prove that this is doable. This technology is excellent for non-profits. DL and neural networks can benefit these organisations. Neural networks can provide a new technique to verify the safety of hardware cryptographic algorithms. It was recently suggested. This study creates a non-profiled SCA utilising convolutional neural networks (CNNs) on an AVR microcontroller with 8 bits of memory and the AES-128 cryptographic algorithm. We used aligned power traces with several samples to demonstrate how challenging CNN-based SCA is in practise. This will help us reach our goals. Here is another technique to create a solid CNN data set. In particular, CNN-based SCA experiment data and noise effects are examined. These experiments employ power traces with Gaussian noise. The CNN-based SCA works well with our data set for non-profiled attacks. Gaussian noise on power traces causes many more issues. These results show that our method can recover more bytes successfully from SCA compared to other methods in correlation power analysis (CPA) and DL-SCA without regularisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
期刊最新文献
Optimum Design of an 18-Pulse Phase Shifting Autotransformer Rectifier to Improve the Power Quality of Cascaded H-Bridge Motor Driver Classification of Resampled Pediatric Epilepsy EEG Data Using Artificial Neural Networks with Discrete Fourier Transforms Time-Based High-Pass, Low-Pass, Shelf, and Notch Filters Deep Learning Method for Power Side-Channel Analysis on Chip Leakages Design of a High-Performance Control Scheme for a Grid-Connected DFIG‐Based Wind Energy Conversion System Using Model Predictive Control and Hysteresis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1