{"title":"星系中CNO元素的演化","authors":"Donatella Romano","doi":"10.1007/s00159-022-00144-z","DOIUrl":null,"url":null,"abstract":"<div><p>After hydrogen and helium, oxygen, carbon, and nitrogen—hereinafter, the CNO elements—are the most abundant species in the universe. They are observed in all kinds of astrophysical environments, from the smallest to the largest scales, and are at the basis of all known forms of life, hence, the constituents of any biomarker. As such, their study proves crucial in several areas of contemporary astrophysics, extending to astrobiology. In this review, I will summarize current knowledge about CNO element evolution in galaxies, starting from our home, the Milky Way. After a brief recap of CNO synthesis in stars, I will present the comparison between chemical evolution model predictions and observations of CNO isotopic abundances and abundance ratios in stars and in the gaseous matter. Such a comparison permits to constrain the modes and time scales of the assembly of galaxies and their stellar populations, as well as stellar evolution and nucleosynthesis theories. I will stress that chemical evolution models must be carefully calibrated against the wealth of abundance data available for the Milky Way before they can be applied to the interpretation of observational datasets for other systems. In this vein, I will also discuss the usefulness of some key CNO isotopic ratios as probes of the prevailing, galaxy-wide stellar initial mass function in galaxies where more direct estimates from the starlight are unfeasible.</p></div>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"30 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00159-022-00144-z.pdf","citationCount":"1","resultStr":"{\"title\":\"The evolution of CNO elements in galaxies\",\"authors\":\"Donatella Romano\",\"doi\":\"10.1007/s00159-022-00144-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>After hydrogen and helium, oxygen, carbon, and nitrogen—hereinafter, the CNO elements—are the most abundant species in the universe. They are observed in all kinds of astrophysical environments, from the smallest to the largest scales, and are at the basis of all known forms of life, hence, the constituents of any biomarker. As such, their study proves crucial in several areas of contemporary astrophysics, extending to astrobiology. In this review, I will summarize current knowledge about CNO element evolution in galaxies, starting from our home, the Milky Way. After a brief recap of CNO synthesis in stars, I will present the comparison between chemical evolution model predictions and observations of CNO isotopic abundances and abundance ratios in stars and in the gaseous matter. Such a comparison permits to constrain the modes and time scales of the assembly of galaxies and their stellar populations, as well as stellar evolution and nucleosynthesis theories. I will stress that chemical evolution models must be carefully calibrated against the wealth of abundance data available for the Milky Way before they can be applied to the interpretation of observational datasets for other systems. In this vein, I will also discuss the usefulness of some key CNO isotopic ratios as probes of the prevailing, galaxy-wide stellar initial mass function in galaxies where more direct estimates from the starlight are unfeasible.</p></div>\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00159-022-00144-z.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00159-022-00144-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-022-00144-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
After hydrogen and helium, oxygen, carbon, and nitrogen—hereinafter, the CNO elements—are the most abundant species in the universe. They are observed in all kinds of astrophysical environments, from the smallest to the largest scales, and are at the basis of all known forms of life, hence, the constituents of any biomarker. As such, their study proves crucial in several areas of contemporary astrophysics, extending to astrobiology. In this review, I will summarize current knowledge about CNO element evolution in galaxies, starting from our home, the Milky Way. After a brief recap of CNO synthesis in stars, I will present the comparison between chemical evolution model predictions and observations of CNO isotopic abundances and abundance ratios in stars and in the gaseous matter. Such a comparison permits to constrain the modes and time scales of the assembly of galaxies and their stellar populations, as well as stellar evolution and nucleosynthesis theories. I will stress that chemical evolution models must be carefully calibrated against the wealth of abundance data available for the Milky Way before they can be applied to the interpretation of observational datasets for other systems. In this vein, I will also discuss the usefulness of some key CNO isotopic ratios as probes of the prevailing, galaxy-wide stellar initial mass function in galaxies where more direct estimates from the starlight are unfeasible.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.