Jinlei Zhang, Hua Li, Shuxin Zhang, Lixing Yang, G. Jin, J. Qi
{"title":"用于城市轨道交通系统短期客流预测的时空图生成对抗性网络","authors":"Jinlei Zhang, Hua Li, Shuxin Zhang, Lixing Yang, G. Jin, J. Qi","doi":"10.1080/03081079.2023.2203922","DOIUrl":null,"url":null,"abstract":"ABSTRACT Most short-term passenger flow prediction methods only consider absolute errors as the optimization objective, which fails to account for spatial and temporal constraints on the predictions. To overcome these limitations, we propose a deep learning-based spatiotemporal graph generative adversarial network (STG-GAN) to accurately predict network-wide short-term passenger flows of the urban rail transit with higher efficiency and lower memory occupancy. Our model is optimized in an adversarial learning manner and includes (1) a generator network including gated temporal conventional networks (TCN) and weight sharing graph convolution networks (GCN) to capture structural spatiotemporal dependencies and generate predictions with a small computational burden; (2) a discriminator network including a spatial discriminator and a temporal discriminator to enhance spatial and temporal constraints of the predictions. The STG-GAN is evaluated on two datasets from Beijing Subway. Results illustrate its superiority and robustness.","PeriodicalId":50322,"journal":{"name":"International Journal of General Systems","volume":"52 1","pages":"694 - 721"},"PeriodicalIF":2.4000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A spatiotemporal graph generative adversarial networks for short-term passenger flow prediction in urban rail transit systems\",\"authors\":\"Jinlei Zhang, Hua Li, Shuxin Zhang, Lixing Yang, G. Jin, J. Qi\",\"doi\":\"10.1080/03081079.2023.2203922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Most short-term passenger flow prediction methods only consider absolute errors as the optimization objective, which fails to account for spatial and temporal constraints on the predictions. To overcome these limitations, we propose a deep learning-based spatiotemporal graph generative adversarial network (STG-GAN) to accurately predict network-wide short-term passenger flows of the urban rail transit with higher efficiency and lower memory occupancy. Our model is optimized in an adversarial learning manner and includes (1) a generator network including gated temporal conventional networks (TCN) and weight sharing graph convolution networks (GCN) to capture structural spatiotemporal dependencies and generate predictions with a small computational burden; (2) a discriminator network including a spatial discriminator and a temporal discriminator to enhance spatial and temporal constraints of the predictions. The STG-GAN is evaluated on two datasets from Beijing Subway. Results illustrate its superiority and robustness.\",\"PeriodicalId\":50322,\"journal\":{\"name\":\"International Journal of General Systems\",\"volume\":\"52 1\",\"pages\":\"694 - 721\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/03081079.2023.2203922\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/03081079.2023.2203922","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A spatiotemporal graph generative adversarial networks for short-term passenger flow prediction in urban rail transit systems
ABSTRACT Most short-term passenger flow prediction methods only consider absolute errors as the optimization objective, which fails to account for spatial and temporal constraints on the predictions. To overcome these limitations, we propose a deep learning-based spatiotemporal graph generative adversarial network (STG-GAN) to accurately predict network-wide short-term passenger flows of the urban rail transit with higher efficiency and lower memory occupancy. Our model is optimized in an adversarial learning manner and includes (1) a generator network including gated temporal conventional networks (TCN) and weight sharing graph convolution networks (GCN) to capture structural spatiotemporal dependencies and generate predictions with a small computational burden; (2) a discriminator network including a spatial discriminator and a temporal discriminator to enhance spatial and temporal constraints of the predictions. The STG-GAN is evaluated on two datasets from Beijing Subway. Results illustrate its superiority and robustness.
期刊介绍:
International Journal of General Systems is a periodical devoted primarily to the publication of original research contributions to system science, basic as well as applied. However, relevant survey articles, invited book reviews, bibliographies, and letters to the editor are also published.
The principal aim of the journal is to promote original systems ideas (concepts, principles, methods, theoretical or experimental results, etc.) that are broadly applicable to various kinds of systems. The term “general system” in the name of the journal is intended to indicate this aim–the orientation to systems ideas that have a general applicability. Typical subject areas covered by the journal include: uncertainty and randomness; fuzziness and imprecision; information; complexity; inductive and deductive reasoning about systems; learning; systems analysis and design; and theoretical as well as experimental knowledge regarding various categories of systems. Submitted research must be well presented and must clearly state the contribution and novelty. Manuscripts dealing with particular kinds of systems which lack general applicability across a broad range of systems should be sent to journals specializing in the respective topics.