存在水下分离/不连续防波堤时波浪和水流的Boussinesq模型

Mohammad Barzegar, M. Ketabdari, Kourosh Kayhan, D. Palaniappan
{"title":"存在水下分离/不连续防波堤时波浪和水流的Boussinesq模型","authors":"Mohammad Barzegar, M. Ketabdari, Kourosh Kayhan, D. Palaniappan","doi":"10.31534/engmod.2020.3-4.ri.03a","DOIUrl":null,"url":null,"abstract":"SUMMARY The effect of beach configurations with the main focus on the detached submerged breakwater on shoreline currents is investigated numerically. The Boussinesq equations are used to model the beach with a constant slope, continuous submerged breakwater, and discontinuous/detached submerged breakwater. Our numerical simulation results show that the transient rip currents are generated near the shoreline at the beach with constant slope while the continuous submerged breakwater structure creates a calm beach area along the shoreline. The presence of the gap in submerged breakwater changes the currents along the shoreline by generating rip currents with two pairs of vortices. One pair of vorticities, located around the gap, damage the breakwater by transmitting sediments along the breakwater foundation and eroding its surface. The second pair, created near the shoreline, erodes the shoreline due to sediment transportation and leads to a dangerous and unsafe situation for swimmers. The rip current creates five main critical areas with the maximum velocity towards the shoreline and offshore. The first set of three areas (numbered 1, 2, 3) has an approximately average velocity of 1-1.25 m/s towards the shoreline. One of these areas (numbered 2) is located close to the shoreline and the other two (numbered 1 and 3) are found breakwater and the return velocity decreases for this structure. For smaller heights (d = 3.7 and 3.2) damping is nearly the same and the returning flow varies depending on the available space through the gap. Specifically, the return velocity for d = 3.7 is higher than that for d = 3.2. The numerical results presented herein suggest that aggressive rip currents are generated in the case of detached submerged breakwater beach configurations.","PeriodicalId":35748,"journal":{"name":"International Journal for Engineering Modelling","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boussinesq Modelling of Waves and Currents in the Presence of Submerged Detached/Discontinuous Breakwaters\",\"authors\":\"Mohammad Barzegar, M. Ketabdari, Kourosh Kayhan, D. Palaniappan\",\"doi\":\"10.31534/engmod.2020.3-4.ri.03a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY The effect of beach configurations with the main focus on the detached submerged breakwater on shoreline currents is investigated numerically. The Boussinesq equations are used to model the beach with a constant slope, continuous submerged breakwater, and discontinuous/detached submerged breakwater. Our numerical simulation results show that the transient rip currents are generated near the shoreline at the beach with constant slope while the continuous submerged breakwater structure creates a calm beach area along the shoreline. The presence of the gap in submerged breakwater changes the currents along the shoreline by generating rip currents with two pairs of vortices. One pair of vorticities, located around the gap, damage the breakwater by transmitting sediments along the breakwater foundation and eroding its surface. The second pair, created near the shoreline, erodes the shoreline due to sediment transportation and leads to a dangerous and unsafe situation for swimmers. The rip current creates five main critical areas with the maximum velocity towards the shoreline and offshore. The first set of three areas (numbered 1, 2, 3) has an approximately average velocity of 1-1.25 m/s towards the shoreline. One of these areas (numbered 2) is located close to the shoreline and the other two (numbered 1 and 3) are found breakwater and the return velocity decreases for this structure. For smaller heights (d = 3.7 and 3.2) damping is nearly the same and the returning flow varies depending on the available space through the gap. Specifically, the return velocity for d = 3.7 is higher than that for d = 3.2. The numerical results presented herein suggest that aggressive rip currents are generated in the case of detached submerged breakwater beach configurations.\",\"PeriodicalId\":35748,\"journal\":{\"name\":\"International Journal for Engineering Modelling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Engineering Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31534/engmod.2020.3-4.ri.03a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Engineering Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31534/engmod.2020.3-4.ri.03a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

摘要对以独立式水下防波堤为主要焦点的海滩形态对海岸线水流的影响进行了数值研究。Boussinesq方程用于对具有恒定坡度、连续水下防波堤和不连续/分离式水下防波堤的海滩进行建模。我们的数值模拟结果表明,恒定坡度的海滩在海岸线附近产生瞬态激流,而连续的水下防波堤结构沿着海岸线形成了平静的海滩区域。水下防波堤缺口的存在通过产生具有两对涡流的激流来改变沿海岸线的水流。位于缺口周围的一对涡流通过沿防波堤基础传输沉积物并侵蚀其表面来破坏防波堤。第二对是在海岸线附近形成的,由于沉积物的输送,侵蚀了海岸线,给游泳者带来了危险和不安全的情况。激流形成了五个主要的关键区域,其最大速度朝向海岸线和近海。第一组三个区域(编号1、2、3)朝向海岸线的平均速度约为1-1.25m/s。其中一个区域(编号2)靠近海岸线,另外两个区域(标记1和3)位于防波堤上,该结构的回流速度降低。对于较小的高度(d=3.7和3.2),阻尼几乎相同,并且回流根据通过间隙的可用空间而变化。具体而言,d=3.7的返回速度高于d=3.2的返回速度。本文给出的数值结果表明,在独立式水下防波堤海滩配置的情况下,会产生侵蚀性的激流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boussinesq Modelling of Waves and Currents in the Presence of Submerged Detached/Discontinuous Breakwaters
SUMMARY The effect of beach configurations with the main focus on the detached submerged breakwater on shoreline currents is investigated numerically. The Boussinesq equations are used to model the beach with a constant slope, continuous submerged breakwater, and discontinuous/detached submerged breakwater. Our numerical simulation results show that the transient rip currents are generated near the shoreline at the beach with constant slope while the continuous submerged breakwater structure creates a calm beach area along the shoreline. The presence of the gap in submerged breakwater changes the currents along the shoreline by generating rip currents with two pairs of vortices. One pair of vorticities, located around the gap, damage the breakwater by transmitting sediments along the breakwater foundation and eroding its surface. The second pair, created near the shoreline, erodes the shoreline due to sediment transportation and leads to a dangerous and unsafe situation for swimmers. The rip current creates five main critical areas with the maximum velocity towards the shoreline and offshore. The first set of three areas (numbered 1, 2, 3) has an approximately average velocity of 1-1.25 m/s towards the shoreline. One of these areas (numbered 2) is located close to the shoreline and the other two (numbered 1 and 3) are found breakwater and the return velocity decreases for this structure. For smaller heights (d = 3.7 and 3.2) damping is nearly the same and the returning flow varies depending on the available space through the gap. Specifically, the return velocity for d = 3.7 is higher than that for d = 3.2. The numerical results presented herein suggest that aggressive rip currents are generated in the case of detached submerged breakwater beach configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Engineering Modelling
International Journal for Engineering Modelling Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
12
期刊介绍: Engineering Modelling is a refereed international journal providing an up-to-date reference for the engineers and researchers engaged in computer aided analysis, design and research in the fields of computational mechanics, numerical methods, software develop-ment and engineering modelling.
期刊最新文献
Modelling a Contention-Based Wireless MAC Protocol with EDCA Countdown and Constrained Priority Freezing Analysis of Stress Intensity Factor in a Cracked Plate Vibratory Conveying by Normal Oscillations with Piecewise Constant Acceleration and Longitudinal Harmonic Oscillations Performance of Multiscale Hydrodynamic Step Bearing with Inhomogeneous Surfaces Pre-modeling by Arc Hydro Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1