{"title":"抗氧化和抗炎纳米颗粒对肾缺血再灌注损伤的保护作用","authors":"S. Banaei","doi":"10.52547/jarums.21.4.361","DOIUrl":null,"url":null,"abstract":"Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effects of nanoparticles in AKI. Methods: A comprehensive search strategy was identified relevant studies on AKI models, using the Scopus, PubMed and Google Scholar databases, from 2000 until 2020. The search strategy included keywords like ischemia-reperfusion and nanoparticles. Results: Oxygen free radicals are produced during the reperfusion phase, which cause lipid peroxidation and promote tissue damage. Oxidative damage to DNA and proteins and lipid membrane peroxidation can cause cell death and apoptosis. Some strategies to reduce the tissue damage caused by ischemia-reperfusion are nanoscale materials. Antioxidant nanoparticles reduce oxidative stress in tissues. Also, they have flexibility in the delivery of therapeutic agents and drugs to the ischemic cells, and imaging of the ischemic regions at the molecular or cellular level. Conclusion: This potential of antioxidant and anti-inflammatory nanoparticles in the diagnosis and treatment of renal ischemic regions is an innovation in the development of new therapies and a unique achievement in recent medical advances.","PeriodicalId":30758,"journal":{"name":"Journal of Ardabil University of Medical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage\",\"authors\":\"S. Banaei\",\"doi\":\"10.52547/jarums.21.4.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effects of nanoparticles in AKI. Methods: A comprehensive search strategy was identified relevant studies on AKI models, using the Scopus, PubMed and Google Scholar databases, from 2000 until 2020. The search strategy included keywords like ischemia-reperfusion and nanoparticles. Results: Oxygen free radicals are produced during the reperfusion phase, which cause lipid peroxidation and promote tissue damage. Oxidative damage to DNA and proteins and lipid membrane peroxidation can cause cell death and apoptosis. Some strategies to reduce the tissue damage caused by ischemia-reperfusion are nanoscale materials. Antioxidant nanoparticles reduce oxidative stress in tissues. Also, they have flexibility in the delivery of therapeutic agents and drugs to the ischemic cells, and imaging of the ischemic regions at the molecular or cellular level. Conclusion: This potential of antioxidant and anti-inflammatory nanoparticles in the diagnosis and treatment of renal ischemic regions is an innovation in the development of new therapies and a unique achievement in recent medical advances.\",\"PeriodicalId\":30758,\"journal\":{\"name\":\"Journal of Ardabil University of Medical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ardabil University of Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/jarums.21.4.361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ardabil University of Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jarums.21.4.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage
Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effects of nanoparticles in AKI. Methods: A comprehensive search strategy was identified relevant studies on AKI models, using the Scopus, PubMed and Google Scholar databases, from 2000 until 2020. The search strategy included keywords like ischemia-reperfusion and nanoparticles. Results: Oxygen free radicals are produced during the reperfusion phase, which cause lipid peroxidation and promote tissue damage. Oxidative damage to DNA and proteins and lipid membrane peroxidation can cause cell death and apoptosis. Some strategies to reduce the tissue damage caused by ischemia-reperfusion are nanoscale materials. Antioxidant nanoparticles reduce oxidative stress in tissues. Also, they have flexibility in the delivery of therapeutic agents and drugs to the ischemic cells, and imaging of the ischemic regions at the molecular or cellular level. Conclusion: This potential of antioxidant and anti-inflammatory nanoparticles in the diagnosis and treatment of renal ischemic regions is an innovation in the development of new therapies and a unique achievement in recent medical advances.