分布式传感器网络中的无线电力传输和能量收集:调查、机遇和挑战

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Distributed Sensor Networks Pub Date : 2022-03-01 DOI:10.1177/15501477211067740
Gerald K. Ijemaru, Kenneth Li-Minn Ang, Jasmine KP Seng
{"title":"分布式传感器网络中的无线电力传输和能量收集:调查、机遇和挑战","authors":"Gerald K. Ijemaru, Kenneth Li-Minn Ang, Jasmine KP Seng","doi":"10.1177/15501477211067740","DOIUrl":null,"url":null,"abstract":"Distributed sensor networks have emerged as part of the advancements in sensing and wireless technologies and currently support several applications, including continuous environmental monitoring, surveillance, tracking, and so on which are running in wireless sensor network environments, and large-scale wireless sensor network multimedia applications that require large amounts of data transmission to an access point. However, these applications are often hampered because sensor nodes are energy-constrained, low-powered, with limited operational lifetime and low processing and limited power-storage capabilities. Current research shows that sensors deployed for distributed sensor network applications are low-power and low-cost devices characterized with multifunctional abilities. This contributes to their quick battery drainage, if they are to operate for long time durations. Owing to the associated cost implications and mode of deployments of the sensor nodes, battery recharging/replacements have significant disadvantages. Energy harvesting and wireless power transfer have therefore become very critical for applications running for longer time durations. This survey focuses on presenting a comprehensive review of the current literature on several wireless power transfer and energy harvesting technologies and highlights their opportunities and challenges in distributed sensor networks. This review highlights updated studies which are specific to wireless power transfer and energy harvesting technologies, including their opportunities, potential applications, limitations and challenges, classifications and comparisons. The final section presents some practical considerations and real-time implementation of a radio frequency–based energy harvesting wireless power transfer technique using Powercast™ power harvesters, and performance analysis of the two radio frequency–based power harvesters is discussed. Experimental results show both short-range and long-range applications of the two radio frequency–based energy harvesters with high power transfer efficiency.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges\",\"authors\":\"Gerald K. Ijemaru, Kenneth Li-Minn Ang, Jasmine KP Seng\",\"doi\":\"10.1177/15501477211067740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed sensor networks have emerged as part of the advancements in sensing and wireless technologies and currently support several applications, including continuous environmental monitoring, surveillance, tracking, and so on which are running in wireless sensor network environments, and large-scale wireless sensor network multimedia applications that require large amounts of data transmission to an access point. However, these applications are often hampered because sensor nodes are energy-constrained, low-powered, with limited operational lifetime and low processing and limited power-storage capabilities. Current research shows that sensors deployed for distributed sensor network applications are low-power and low-cost devices characterized with multifunctional abilities. This contributes to their quick battery drainage, if they are to operate for long time durations. Owing to the associated cost implications and mode of deployments of the sensor nodes, battery recharging/replacements have significant disadvantages. Energy harvesting and wireless power transfer have therefore become very critical for applications running for longer time durations. This survey focuses on presenting a comprehensive review of the current literature on several wireless power transfer and energy harvesting technologies and highlights their opportunities and challenges in distributed sensor networks. This review highlights updated studies which are specific to wireless power transfer and energy harvesting technologies, including their opportunities, potential applications, limitations and challenges, classifications and comparisons. The final section presents some practical considerations and real-time implementation of a radio frequency–based energy harvesting wireless power transfer technique using Powercast™ power harvesters, and performance analysis of the two radio frequency–based power harvesters is discussed. Experimental results show both short-range and long-range applications of the two radio frequency–based energy harvesters with high power transfer efficiency.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501477211067740\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501477211067740","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 20

摘要

分布式传感器网络作为传感和无线技术进步的一部分而出现,目前支持多种应用,包括在无线传感器网络环境中运行的连续环境监测、监视、跟踪等,以及需要向接入点传输大量数据的大规模无线传感器网络多媒体应用。然而,这些应用往往受到阻碍,因为传感器节点能量受限、低功耗、有限的工作寿命、低处理和有限的电力存储能力。目前的研究表明,用于分布式传感器网络应用的传感器具有低功耗、低成本、多功能的特点。这有助于他们的电池快速排水,如果他们要长时间运行。由于相关的成本影响和传感器节点的部署模式,电池充电/更换具有显着的缺点。因此,能量收集和无线电力传输对于长时间运行的应用变得非常关键。本调查的重点是对几种无线能量传输和能量收集技术的当前文献进行全面回顾,并强调了它们在分布式传感器网络中的机遇和挑战。本文重点介绍了无线能量传输和能量收集技术的最新研究,包括它们的机遇、潜在应用、限制和挑战、分类和比较。最后一节介绍了使用Powercast™功率采集器的基于射频的能量收集无线电力传输技术的一些实际考虑和实时实现,并讨论了两种基于射频的功率采集器的性能分析。实验结果表明,这两种基于射频的能量采集器具有高功率传输效率的近距离和远程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges
Distributed sensor networks have emerged as part of the advancements in sensing and wireless technologies and currently support several applications, including continuous environmental monitoring, surveillance, tracking, and so on which are running in wireless sensor network environments, and large-scale wireless sensor network multimedia applications that require large amounts of data transmission to an access point. However, these applications are often hampered because sensor nodes are energy-constrained, low-powered, with limited operational lifetime and low processing and limited power-storage capabilities. Current research shows that sensors deployed for distributed sensor network applications are low-power and low-cost devices characterized with multifunctional abilities. This contributes to their quick battery drainage, if they are to operate for long time durations. Owing to the associated cost implications and mode of deployments of the sensor nodes, battery recharging/replacements have significant disadvantages. Energy harvesting and wireless power transfer have therefore become very critical for applications running for longer time durations. This survey focuses on presenting a comprehensive review of the current literature on several wireless power transfer and energy harvesting technologies and highlights their opportunities and challenges in distributed sensor networks. This review highlights updated studies which are specific to wireless power transfer and energy harvesting technologies, including their opportunities, potential applications, limitations and challenges, classifications and comparisons. The final section presents some practical considerations and real-time implementation of a radio frequency–based energy harvesting wireless power transfer technique using Powercast™ power harvesters, and performance analysis of the two radio frequency–based power harvesters is discussed. Experimental results show both short-range and long-range applications of the two radio frequency–based energy harvesters with high power transfer efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
期刊最新文献
Interoperability Structure of Smart Water Conservancy Based on Internet of Things Smart Predictor for Spontaneous Combustion in Cotton Storages Using Wireless Sensor Network and Machine Learning Secure Sharing of Electronic Medical Records Based on Blockchain Secure Sharing of Electronic Medical Records Based on Blockchain PHS: A Pulse Sequence Method Based on Hyperbolic Frequency Modulation for Speed Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1