基于Adaboost SVM的药物靶点定量构效分析

Fu-jun Gao
{"title":"基于Adaboost SVM的药物靶点定量构效分析","authors":"Fu-jun Gao","doi":"10.1504/ijica.2020.10029128","DOIUrl":null,"url":null,"abstract":"This paper first constructs two sets of datasets to demonstrate the effectiveness of the proposed method, one dataset consists of all human protein data, and the other is composed of human G protein-coupled receptor data, which accounts for a high proportion of drug targets. It extracts the corresponding primary structure, polypeptide characteristics and basic physicochemical properties of each protein in the dataset, feature selection is used to reduce the learning burden of classifier as the feature space of training classifier. Then the data are preprocessed and the optimal classifier is constructed by adjusting the parameters of the model. Datasets are classified by SVM classifier and Adaboost-SVM classifier respectively in the experimental construction and analysis part, analysed and compared the experimental results of two classifiers applied to two sets of datasets before and after data preprocessing, the classification results of the two groups were verified each other to increase the reliability of the classification results. The experimental results verify the effectiveness of the proposed method. At the same time, it shows that the method proposed in this paper can effectively predict drug targets, and provide a preliminary reference for drug research and development workers.","PeriodicalId":39390,"journal":{"name":"International Journal of Innovative Computing and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative structure-activity analysis of predicted drug targets based on Adaboost-SVM\",\"authors\":\"Fu-jun Gao\",\"doi\":\"10.1504/ijica.2020.10029128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper first constructs two sets of datasets to demonstrate the effectiveness of the proposed method, one dataset consists of all human protein data, and the other is composed of human G protein-coupled receptor data, which accounts for a high proportion of drug targets. It extracts the corresponding primary structure, polypeptide characteristics and basic physicochemical properties of each protein in the dataset, feature selection is used to reduce the learning burden of classifier as the feature space of training classifier. Then the data are preprocessed and the optimal classifier is constructed by adjusting the parameters of the model. Datasets are classified by SVM classifier and Adaboost-SVM classifier respectively in the experimental construction and analysis part, analysed and compared the experimental results of two classifiers applied to two sets of datasets before and after data preprocessing, the classification results of the two groups were verified each other to increase the reliability of the classification results. The experimental results verify the effectiveness of the proposed method. At the same time, it shows that the method proposed in this paper can effectively predict drug targets, and provide a preliminary reference for drug research and development workers.\",\"PeriodicalId\":39390,\"journal\":{\"name\":\"International Journal of Innovative Computing and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijica.2020.10029128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijica.2020.10029128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文首先构建了两组数据集来证明所提出方法的有效性,一组数据集由所有人类蛋白质数据组成,另一组数据由人类G蛋白偶联受体数据组成,占药物靶点的比例很高。它提取数据集中每种蛋白质对应的一级结构、多肽特征和基本理化性质,将特征选择作为训练分类器的特征空间,以减轻分类器的学习负担。然后对数据进行预处理,通过调整模型参数来构造最优分类器。在实验构建和分析部分,分别使用SVM分类器和Adaboost SVM分类器对数据集进行分类,分析比较了两个分类器在数据预处理前后应用于两组数据集的实验结果,对两组分类器的分类结果进行了相互验证,提高了分类结果的可靠性。实验结果验证了该方法的有效性。同时,表明本文提出的方法能够有效预测药物靶点,为药物研发工作者提供初步参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative structure-activity analysis of predicted drug targets based on Adaboost-SVM
This paper first constructs two sets of datasets to demonstrate the effectiveness of the proposed method, one dataset consists of all human protein data, and the other is composed of human G protein-coupled receptor data, which accounts for a high proportion of drug targets. It extracts the corresponding primary structure, polypeptide characteristics and basic physicochemical properties of each protein in the dataset, feature selection is used to reduce the learning burden of classifier as the feature space of training classifier. Then the data are preprocessed and the optimal classifier is constructed by adjusting the parameters of the model. Datasets are classified by SVM classifier and Adaboost-SVM classifier respectively in the experimental construction and analysis part, analysed and compared the experimental results of two classifiers applied to two sets of datasets before and after data preprocessing, the classification results of the two groups were verified each other to increase the reliability of the classification results. The experimental results verify the effectiveness of the proposed method. At the same time, it shows that the method proposed in this paper can effectively predict drug targets, and provide a preliminary reference for drug research and development workers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
23
期刊介绍: IJICA proposes and fosters discussion on all new computing paradigms and corresponding applications to solve real-world problems. It will cover all aspects related to evolutionary computation, quantum-inspired computing, swarm-based computing, neuro-computing, DNA computing and fuzzy computing, as well as other new computing paradigms
期刊最新文献
Evaluation of banknote identification methodologies based on local and deep features Multilevel CNN for anterior chamber angle classification using AS-OCT images Transfer learning-based lung segmentation and pneumonia detection for paediatric chest X-ray images Wind turbine fault detection: a semi-supervised learning approach with two different dimensionality reduction techniques Heuristic-based approaches for fracture detection in borehole images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1