{"title":"飞机水动力设计方法综述","authors":"M. Morabito","doi":"10.5957/JSPD.11180039","DOIUrl":null,"url":null,"abstract":"The design of successful water-based aircraft requires a close collaboration between the aeronautical engineers and naval architects, who perform high-speed towing tests, stability calculations, or computational fluid dynamics in support of the design. This article presents the fundamental design considerations of waterborne aircraft, which are outside of the typical educational scope of most naval architects, but which they are sometimes asked to address. These include 1) the hydrostatic and hydrodynamic problems associated with seaplane design, 2) early-stage methods for sizing the hull, 3) prediction techniques using archival data, and 4) hydrodynamic model testing procedures. Although a new design will often require substantial iteration to achieve the desired outcome, the information in this article will assist in developing a reasonable starting point for the design spiral and provides sufficient details for a hydrodynamic model testing facility to perform a successful series of model tests on the design. Although much of the work in this field dates from the 1940s, it is important to review this material in light of the current practices being used at hydrodynamic research facilities today. A detailed description of the model testing apparatus and procedure, used in a recent study at the U.S. Naval Academy, is presented to demonstrate the current applicability of these methods and some pitfalls that can be expected in testing.\n \n \n Today, there is a renewed interest in seaplane designs for both civilian and governmental applications worldwide. According to the Seaplane Pilots Association, there are approximately thirty-five thousand seaplane-rated pilots in the United States and between five and ten thousand operational seaplanes. Worldwide, larger seaplanes are used for firefighting, search and rescue applications, and cargo transportation.\n","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Hydrodynamic Design Methods for Seaplanes\",\"authors\":\"M. Morabito\",\"doi\":\"10.5957/JSPD.11180039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of successful water-based aircraft requires a close collaboration between the aeronautical engineers and naval architects, who perform high-speed towing tests, stability calculations, or computational fluid dynamics in support of the design. This article presents the fundamental design considerations of waterborne aircraft, which are outside of the typical educational scope of most naval architects, but which they are sometimes asked to address. These include 1) the hydrostatic and hydrodynamic problems associated with seaplane design, 2) early-stage methods for sizing the hull, 3) prediction techniques using archival data, and 4) hydrodynamic model testing procedures. Although a new design will often require substantial iteration to achieve the desired outcome, the information in this article will assist in developing a reasonable starting point for the design spiral and provides sufficient details for a hydrodynamic model testing facility to perform a successful series of model tests on the design. Although much of the work in this field dates from the 1940s, it is important to review this material in light of the current practices being used at hydrodynamic research facilities today. A detailed description of the model testing apparatus and procedure, used in a recent study at the U.S. Naval Academy, is presented to demonstrate the current applicability of these methods and some pitfalls that can be expected in testing.\\n \\n \\n Today, there is a renewed interest in seaplane designs for both civilian and governmental applications worldwide. According to the Seaplane Pilots Association, there are approximately thirty-five thousand seaplane-rated pilots in the United States and between five and ten thousand operational seaplanes. Worldwide, larger seaplanes are used for firefighting, search and rescue applications, and cargo transportation.\\n\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JSPD.11180039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JSPD.11180039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
A Review of Hydrodynamic Design Methods for Seaplanes
The design of successful water-based aircraft requires a close collaboration between the aeronautical engineers and naval architects, who perform high-speed towing tests, stability calculations, or computational fluid dynamics in support of the design. This article presents the fundamental design considerations of waterborne aircraft, which are outside of the typical educational scope of most naval architects, but which they are sometimes asked to address. These include 1) the hydrostatic and hydrodynamic problems associated with seaplane design, 2) early-stage methods for sizing the hull, 3) prediction techniques using archival data, and 4) hydrodynamic model testing procedures. Although a new design will often require substantial iteration to achieve the desired outcome, the information in this article will assist in developing a reasonable starting point for the design spiral and provides sufficient details for a hydrodynamic model testing facility to perform a successful series of model tests on the design. Although much of the work in this field dates from the 1940s, it is important to review this material in light of the current practices being used at hydrodynamic research facilities today. A detailed description of the model testing apparatus and procedure, used in a recent study at the U.S. Naval Academy, is presented to demonstrate the current applicability of these methods and some pitfalls that can be expected in testing.
Today, there is a renewed interest in seaplane designs for both civilian and governmental applications worldwide. According to the Seaplane Pilots Association, there are approximately thirty-five thousand seaplane-rated pilots in the United States and between five and ten thousand operational seaplanes. Worldwide, larger seaplanes are used for firefighting, search and rescue applications, and cargo transportation.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.