{"title":"利用量子级联激光提高血糖测量系统的精度","authors":"T. Koyama, S. Kino, Y. Matsuura","doi":"10.4236/opj.2019.910014","DOIUrl":null,"url":null,"abstract":"For non-invasive measurement of blood glucose levels, a measurement system based on mid-infrared, attenuated-total-reflection spectroscopy equipped with hollow optical fibers, a trapezoidal multi-reflection prism, and two fixed-wavelength quantum cascade lasers emitting different wavelengths is proposed. From the absorption spectra of lip mucosa measured by Fourier-transform infrared spectrometry, two wavelengths, 1152 cm-1 for absorption by glucose and 1186 cm-1 for the background, were chosen. To reduce measurement errors, the power distribution on the prism surface was investigated, and it was found that some high-intensity spots appear on the prism surface due to the coherency of the laser beam. This inhomogeneous power distribution causes measurement errors for slight movements of the lip mucosa. To homogenize the intensity distribution on the prism, a lens to excite higher modes in the fiber was introduced, and the incident angle was changed to suppress interference due to back-reflected light. These improvements increased the measurement stability, and in-vivo experiments demonstrated that the measured optical absorption correlates well with blood glucose levels.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accuracy Improvement of Blood Glucose Measurement System Using Quantum Cascade Lasers\",\"authors\":\"T. Koyama, S. Kino, Y. Matsuura\",\"doi\":\"10.4236/opj.2019.910014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For non-invasive measurement of blood glucose levels, a measurement system based on mid-infrared, attenuated-total-reflection spectroscopy equipped with hollow optical fibers, a trapezoidal multi-reflection prism, and two fixed-wavelength quantum cascade lasers emitting different wavelengths is proposed. From the absorption spectra of lip mucosa measured by Fourier-transform infrared spectrometry, two wavelengths, 1152 cm-1 for absorption by glucose and 1186 cm-1 for the background, were chosen. To reduce measurement errors, the power distribution on the prism surface was investigated, and it was found that some high-intensity spots appear on the prism surface due to the coherency of the laser beam. This inhomogeneous power distribution causes measurement errors for slight movements of the lip mucosa. To homogenize the intensity distribution on the prism, a lens to excite higher modes in the fiber was introduced, and the incident angle was changed to suppress interference due to back-reflected light. These improvements increased the measurement stability, and in-vivo experiments demonstrated that the measured optical absorption correlates well with blood glucose levels.\",\"PeriodicalId\":64491,\"journal\":{\"name\":\"光学与光子学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光学与光子学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/opj.2019.910014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/opj.2019.910014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accuracy Improvement of Blood Glucose Measurement System Using Quantum Cascade Lasers
For non-invasive measurement of blood glucose levels, a measurement system based on mid-infrared, attenuated-total-reflection spectroscopy equipped with hollow optical fibers, a trapezoidal multi-reflection prism, and two fixed-wavelength quantum cascade lasers emitting different wavelengths is proposed. From the absorption spectra of lip mucosa measured by Fourier-transform infrared spectrometry, two wavelengths, 1152 cm-1 for absorption by glucose and 1186 cm-1 for the background, were chosen. To reduce measurement errors, the power distribution on the prism surface was investigated, and it was found that some high-intensity spots appear on the prism surface due to the coherency of the laser beam. This inhomogeneous power distribution causes measurement errors for slight movements of the lip mucosa. To homogenize the intensity distribution on the prism, a lens to excite higher modes in the fiber was introduced, and the incident angle was changed to suppress interference due to back-reflected light. These improvements increased the measurement stability, and in-vivo experiments demonstrated that the measured optical absorption correlates well with blood glucose levels.