打破我们对因子得分不确定性的沉默

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH Journal of Educational and Behavioral Statistics Pub Date : 2022-11-07 DOI:10.3102/10769986221128810
N. Waller
{"title":"打破我们对因子得分不确定性的沉默","authors":"N. Waller","doi":"10.3102/10769986221128810","DOIUrl":null,"url":null,"abstract":"Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of factor scores can be constructed to fit the model. Because all sets are mathematically exchangeable, factor scores are indeterminate. Our professional silence on this topic is difficult to explain given that FSI was first noted almost 100 years ago by E. B. Wilson, the 24th president (1929) of the American Statistical Association. To help disseminate Wilson’s insights, we demonstrate the underlying mathematics of FSI using the language of finite-dimensional vector spaces and well-known ideas of regression theory. We then illustrate the numerical implications of FSI by describing new and easily implemented methods for transforming factor scores into alternative sets of factor scores. An online supplement (and the fungible R library) includes R functions for illustrating FSI.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"48 1","pages":"244 - 261"},"PeriodicalIF":1.9000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Breaking Our Silence on Factor Score Indeterminacy\",\"authors\":\"N. Waller\",\"doi\":\"10.3102/10769986221128810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of factor scores can be constructed to fit the model. Because all sets are mathematically exchangeable, factor scores are indeterminate. Our professional silence on this topic is difficult to explain given that FSI was first noted almost 100 years ago by E. B. Wilson, the 24th president (1929) of the American Statistical Association. To help disseminate Wilson’s insights, we demonstrate the underlying mathematics of FSI using the language of finite-dimensional vector spaces and well-known ideas of regression theory. We then illustrate the numerical implications of FSI by describing new and easily implemented methods for transforming factor scores into alternative sets of factor scores. An online supplement (and the fungible R library) includes R functions for illustrating FSI.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"48 1\",\"pages\":\"244 - 261\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986221128810\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986221128810","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 2

摘要

尽管许多关于多元统计的教科书都讨论了常见的因子分析模型,但这些书中很少提到因子得分不确定性(FSI)的问题。因此,许多学生和当代研究者没有意识到一个重要的事实。也就是说,对于任何具有已知(或估计)模型参数的公共因子模型,可以构造无限组因子得分来拟合该模型。因为所有集合在数学上都是可交换的,所以因子得分是不确定的。鉴于美国统计协会第24任主席(1929年)E.B.Wilson在近100年前首次注意到FSI,我们在这个话题上的专业沉默很难解释。为了帮助传播Wilson的见解,我们使用有限维向量空间的语言和回归理论的著名思想来演示FSI的基本数学。然后,我们通过描述将因子得分转换为因子得分的替代集合的新的、易于实现的方法来说明FSI的数字含义。在线增刊(以及可替代的R库)包括用于说明FSI的R函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breaking Our Silence on Factor Score Indeterminacy
Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of factor scores can be constructed to fit the model. Because all sets are mathematically exchangeable, factor scores are indeterminate. Our professional silence on this topic is difficult to explain given that FSI was first noted almost 100 years ago by E. B. Wilson, the 24th president (1929) of the American Statistical Association. To help disseminate Wilson’s insights, we demonstrate the underlying mathematics of FSI using the language of finite-dimensional vector spaces and well-known ideas of regression theory. We then illustrate the numerical implications of FSI by describing new and easily implemented methods for transforming factor scores into alternative sets of factor scores. An online supplement (and the fungible R library) includes R functions for illustrating FSI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
期刊最新文献
Improving Balance in Educational Measurement: A Legacy of E. F. Lindquist A Simple Technique Assessing Ordinal and Disordinal Interaction Effects A Comparison of Latent Semantic Analysis and Latent Dirichlet Allocation in Educational Measurement Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming Corrigendum to Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1