{"title":"通过收缩先验控制非高斯过程的灵活性","authors":"Rafael Cabral, D. Bolin, H. Rue","doi":"10.1214/22-ba1342","DOIUrl":null,"url":null,"abstract":"The normal inverse Gaussian (NIG) and generalized asymmetric Laplace (GAL) distributions can be seen as skewed and semi-heavy-tailed extensions of the Gaussian distribution. Models driven by these more flexible noise distributions are then re-garded as flexible extensions of simpler Gaussian models. Inferential procedures tend to overestimate the degree of non-Gaussianity in the data and therefore we propose controlling the flexibility of these non-Gaussian models by adding sensible priors in the inferential framework that contract the model towards Gaussianity. In our venture to derive sensible priors, we also propose a new intuitive parameterization of the non-Gaussian models and discuss how to implement them efficiently in Stan . The methods are derived for a generic class of non-Gaussian models that include spatial Mat´ern fields, autoregressive models for time series, and simultaneous autoregressive models for aerial data. The results are illustrated with a simulation study and geostatistics application, where priors that penalize model complexity were shown to lead to more robust estimation and give preference to the Gaussian model, while at the same time allowing for non-Gaussianity if there is sufficient evidence in the data.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Controlling the Flexibility of Non-Gaussian Processes Through Shrinkage Priors\",\"authors\":\"Rafael Cabral, D. Bolin, H. Rue\",\"doi\":\"10.1214/22-ba1342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The normal inverse Gaussian (NIG) and generalized asymmetric Laplace (GAL) distributions can be seen as skewed and semi-heavy-tailed extensions of the Gaussian distribution. Models driven by these more flexible noise distributions are then re-garded as flexible extensions of simpler Gaussian models. Inferential procedures tend to overestimate the degree of non-Gaussianity in the data and therefore we propose controlling the flexibility of these non-Gaussian models by adding sensible priors in the inferential framework that contract the model towards Gaussianity. In our venture to derive sensible priors, we also propose a new intuitive parameterization of the non-Gaussian models and discuss how to implement them efficiently in Stan . The methods are derived for a generic class of non-Gaussian models that include spatial Mat´ern fields, autoregressive models for time series, and simultaneous autoregressive models for aerial data. The results are illustrated with a simulation study and geostatistics application, where priors that penalize model complexity were shown to lead to more robust estimation and give preference to the Gaussian model, while at the same time allowing for non-Gaussianity if there is sufficient evidence in the data.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ba1342\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1342","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Controlling the Flexibility of Non-Gaussian Processes Through Shrinkage Priors
The normal inverse Gaussian (NIG) and generalized asymmetric Laplace (GAL) distributions can be seen as skewed and semi-heavy-tailed extensions of the Gaussian distribution. Models driven by these more flexible noise distributions are then re-garded as flexible extensions of simpler Gaussian models. Inferential procedures tend to overestimate the degree of non-Gaussianity in the data and therefore we propose controlling the flexibility of these non-Gaussian models by adding sensible priors in the inferential framework that contract the model towards Gaussianity. In our venture to derive sensible priors, we also propose a new intuitive parameterization of the non-Gaussian models and discuss how to implement them efficiently in Stan . The methods are derived for a generic class of non-Gaussian models that include spatial Mat´ern fields, autoregressive models for time series, and simultaneous autoregressive models for aerial data. The results are illustrated with a simulation study and geostatistics application, where priors that penalize model complexity were shown to lead to more robust estimation and give preference to the Gaussian model, while at the same time allowing for non-Gaussianity if there is sufficient evidence in the data.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.