黏菌算法在无限脉冲响应系统辨识问题中的应用

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Computer Science-AGH Pub Date : 2022-09-16 DOI:10.53070/bbd.1172833
Davut Izci, Serdar Ekinci, Murat Güleydi̇n
{"title":"黏菌算法在无限脉冲响应系统辨识问题中的应用","authors":"Davut Izci, Serdar Ekinci, Murat Güleydi̇n","doi":"10.53070/bbd.1172833","DOIUrl":null,"url":null,"abstract":"Recently, the researchers working in the field of science and engineering have paid a considerable attention to the concept of the system identification to tackle with complex optimization problems. It is feasible to achieve more accurate models of physical plants with the infinite impulse response (IIR) models compared to their finite counterparts (FIR). To get the most out of the IIR models for the system identification, metaheuristic optimization algorithms can be used as efficient solutions. This work, therefore, aims to demonstrate more promising performance of a new metaheuristic algorithm named slime mould algorithm. In this regard, a comparative assessment is performed using different metaheuristic optimization techniques and different IIR model identification problems are considered. The slime mould algorithm is shown to achieve better accuracy and robustness in terms of IIR model identification with the help of obtained statistical results.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Slime Mould Algorithm to Infinite Impulse Response System Identification Problem\",\"authors\":\"Davut Izci, Serdar Ekinci, Murat Güleydi̇n\",\"doi\":\"10.53070/bbd.1172833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the researchers working in the field of science and engineering have paid a considerable attention to the concept of the system identification to tackle with complex optimization problems. It is feasible to achieve more accurate models of physical plants with the infinite impulse response (IIR) models compared to their finite counterparts (FIR). To get the most out of the IIR models for the system identification, metaheuristic optimization algorithms can be used as efficient solutions. This work, therefore, aims to demonstrate more promising performance of a new metaheuristic algorithm named slime mould algorithm. In this regard, a comparative assessment is performed using different metaheuristic optimization techniques and different IIR model identification problems are considered. The slime mould algorithm is shown to achieve better accuracy and robustness in terms of IIR model identification with the help of obtained statistical results.\",\"PeriodicalId\":41917,\"journal\":{\"name\":\"Computer Science-AGH\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science-AGH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53070/bbd.1172833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53070/bbd.1172833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

近年来,利用系统辨识的概念来解决复杂的优化问题受到了科学和工程领域研究人员的广泛关注。与有限脉冲响应模型(FIR)相比,无限脉冲响应模型(IIR)可以实现更精确的物理植物模型。为了最大限度地利用IIR模型进行系统识别,可以采用元启发式优化算法作为有效的解决方案。因此,本工作旨在证明一种名为黏菌算法的新元启发式算法的更有希望的性能。在这方面,使用不同的元启发式优化技术进行比较评估,并考虑不同的IIR模型识别问题。通过得到的统计结果表明,黏菌算法在IIR模型识别方面具有较好的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Slime Mould Algorithm to Infinite Impulse Response System Identification Problem
Recently, the researchers working in the field of science and engineering have paid a considerable attention to the concept of the system identification to tackle with complex optimization problems. It is feasible to achieve more accurate models of physical plants with the infinite impulse response (IIR) models compared to their finite counterparts (FIR). To get the most out of the IIR models for the system identification, metaheuristic optimization algorithms can be used as efficient solutions. This work, therefore, aims to demonstrate more promising performance of a new metaheuristic algorithm named slime mould algorithm. In this regard, a comparative assessment is performed using different metaheuristic optimization techniques and different IIR model identification problems are considered. The slime mould algorithm is shown to achieve better accuracy and robustness in terms of IIR model identification with the help of obtained statistical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Science-AGH
Computer Science-AGH COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.40
自引率
0.00%
发文量
18
审稿时长
20 weeks
期刊最新文献
A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm Database Replication for Disconnected Operations with Quasi Real-Time Synchronization Hybrid Variable Neighborhood Search for Solving School Bus-Driver Problem with Resource Constraints A Survey on Multi-Objective Based Parameter Optimization for Deep Learning Melanoma Skin Cancer and Nevus Mole Classification using Intensity Value Estimation with Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1