Amel Ben Mrad, Nida Sheibat-Othman, Ana Paula Alves Amorim, Roberta Lopes do Rosario, Timothy F. L. McKenna
{"title":"聚乙烯浆料:溶胀和溶解度","authors":"Amel Ben Mrad, Nida Sheibat-Othman, Ana Paula Alves Amorim, Roberta Lopes do Rosario, Timothy F. L. McKenna","doi":"10.1002/mren.202300020","DOIUrl":null,"url":null,"abstract":"<p>The solubility of different alkanes in polyethylene (PE) of different densities, as well as the solubility of the polymers in the alkanes, and the degree of swelling of the powders are studied as a function of temperature. It is found that the solubility of linear low-density polyethylene (LLDPE) is as much as 6 times greater than that of high-density polyethylene (HDPE) at the same temperature, and that LLDPE swells at least 50% more than HDPE the same diluent at the same temperature. The breakthrough curves also show that lighter alkanes swell the PE more at a given temperature than heavier ones. Also, the breakthrough points (the temperature at which the swelling versus temperature curves change slope) occur at lower temperatures for PE of lower density. Gel formation is observed for medium and low density polyethylenes in pentane and hexane. This quantitative information will be useful in developing process models for different industrial polymerization processes, as particle swelling can have a significant impact on slurry viscosity and the flow stability and solids loading of commercial reactors.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyethylene Slurries: Swelling and Solubility\",\"authors\":\"Amel Ben Mrad, Nida Sheibat-Othman, Ana Paula Alves Amorim, Roberta Lopes do Rosario, Timothy F. L. McKenna\",\"doi\":\"10.1002/mren.202300020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The solubility of different alkanes in polyethylene (PE) of different densities, as well as the solubility of the polymers in the alkanes, and the degree of swelling of the powders are studied as a function of temperature. It is found that the solubility of linear low-density polyethylene (LLDPE) is as much as 6 times greater than that of high-density polyethylene (HDPE) at the same temperature, and that LLDPE swells at least 50% more than HDPE the same diluent at the same temperature. The breakthrough curves also show that lighter alkanes swell the PE more at a given temperature than heavier ones. Also, the breakthrough points (the temperature at which the swelling versus temperature curves change slope) occur at lower temperatures for PE of lower density. Gel formation is observed for medium and low density polyethylenes in pentane and hexane. This quantitative information will be useful in developing process models for different industrial polymerization processes, as particle swelling can have a significant impact on slurry viscosity and the flow stability and solids loading of commercial reactors.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300020\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
The solubility of different alkanes in polyethylene (PE) of different densities, as well as the solubility of the polymers in the alkanes, and the degree of swelling of the powders are studied as a function of temperature. It is found that the solubility of linear low-density polyethylene (LLDPE) is as much as 6 times greater than that of high-density polyethylene (HDPE) at the same temperature, and that LLDPE swells at least 50% more than HDPE the same diluent at the same temperature. The breakthrough curves also show that lighter alkanes swell the PE more at a given temperature than heavier ones. Also, the breakthrough points (the temperature at which the swelling versus temperature curves change slope) occur at lower temperatures for PE of lower density. Gel formation is observed for medium and low density polyethylenes in pentane and hexane. This quantitative information will be useful in developing process models for different industrial polymerization processes, as particle swelling can have a significant impact on slurry viscosity and the flow stability and solids loading of commercial reactors.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.