包含调查抽样、缺失数据分析和因果推断的校准技术

IF 1.7 3区 数学 Q1 STATISTICS & PROBABILITY International Statistical Review Pub Date : 2022-08-11 DOI:10.1111/insr.12518
Shixiao Zhang, Peisong Han, Changbao Wu
{"title":"包含调查抽样、缺失数据分析和因果推断的校准技术","authors":"Shixiao Zhang,&nbsp;Peisong Han,&nbsp;Changbao Wu","doi":"10.1111/insr.12518","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We provide a critical review on calibration methods developed in three different areas: survey sampling, missing data analysis and causal inference. We highlight the connections and variations of calibration techniques used in missing data analysis and causal inference to conventional calibration weighting and estimation in survey sampling and provide a common framework through model-calibration and empirical likelihood to unify different calibration methods proposed in recent literature. The goal is to demonstrate the success and effectiveness of calibration methods in achieving some highly desired properties for missing data analysis and causal inference.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"91 2","pages":"165-192"},"PeriodicalIF":1.7000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference\",\"authors\":\"Shixiao Zhang,&nbsp;Peisong Han,&nbsp;Changbao Wu\",\"doi\":\"10.1111/insr.12518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We provide a critical review on calibration methods developed in three different areas: survey sampling, missing data analysis and causal inference. We highlight the connections and variations of calibration techniques used in missing data analysis and causal inference to conventional calibration weighting and estimation in survey sampling and provide a common framework through model-calibration and empirical likelihood to unify different calibration methods proposed in recent literature. The goal is to demonstrate the success and effectiveness of calibration methods in achieving some highly desired properties for missing data analysis and causal inference.</p>\\n </div>\",\"PeriodicalId\":14479,\"journal\":{\"name\":\"International Statistical Review\",\"volume\":\"91 2\",\"pages\":\"165-192\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Statistical Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12518\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12518","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们提供了一个关键的审查校准方法开发在三个不同的领域:调查抽样,缺失数据分析和因果推理。我们强调了在缺失数据分析中使用的校准技术的联系和变化,以及对调查抽样中传统校准加权和估计的因果推理,并通过模型校准和经验似然提供了一个通用框架,以统一最近文献中提出的不同校准方法。目标是证明校准方法在实现缺失数据分析和因果推理的一些高度期望的特性方面的成功和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference

We provide a critical review on calibration methods developed in three different areas: survey sampling, missing data analysis and causal inference. We highlight the connections and variations of calibration techniques used in missing data analysis and causal inference to conventional calibration weighting and estimation in survey sampling and provide a common framework through model-calibration and empirical likelihood to unify different calibration methods proposed in recent literature. The goal is to demonstrate the success and effectiveness of calibration methods in achieving some highly desired properties for missing data analysis and causal inference.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Statistical Review
International Statistical Review 数学-统计学与概率论
CiteScore
4.30
自引率
5.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.
期刊最新文献
Issue Information Statistics: Multivariate Data Integration Using R; Methods and Applications With the mixOmics Package Kim-Anh Lê Cao, Zoe Marie WelhamChapman & Hall/CRC, 2021, xxi + 308 pages, £84.99/$115.00, hardcover ISBN: 978-1032128078 eBook ISBN: 9781003026860 Philosophies, Puzzles, and Paradoxes: A Statistician's Search for the Truth Yudi Pawitan and Youngjo LeeChapman & Hall/CRC, 2024, xiv + 351 pages, £18.39/$23.96 paperback, £104/$136 hardback, £17.24/$22.46 eBook ISBN: 9781032377391 paperback; 9781032377407 hardback; 9781003341659 ebook Machine Learning Theory and Applications: Hands-On Use Cases With Python on Classical and Quantum Machines, Xavier Vasques, John Wiley & Sons, 2024, xx + 487 pages, $89.95, hardcover ISBN: 978-1-394-22061-8 Object Oriented Data Analysis J. S. Marron and I. L. DrydenChapman & Hall/CRC, 2022, xii + 424 pages, softcover ISBN: 978-0-8153-9282-8 (hbk) ISBN: 978-1-032-11480-4 (pbk) ISBN: 978-1-351-18967-5 (ebk)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1