应用于新冠肺炎大流行的SIRD模型中的函数估计和正则化

IF 1.1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY Inverse Problems in Science and Engineering Pub Date : 2021-01-17 DOI:10.1080/17415977.2021.1872563
C. C. Pacheco, C. R. de Lacerda
{"title":"应用于新冠肺炎大流行的SIRD模型中的函数估计和正则化","authors":"C. C. Pacheco, C. R. de Lacerda","doi":"10.1080/17415977.2021.1872563","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper deals with the quantification of the different rates in epidemiological models from a function estimation framework, with the objective of identifying the desired unknowns without defining a priori basis functions for describing its behaviour. This approach is used to analyze data for the Covid-19 pandemic in Italy and Brazil. The forward problem is written in terms of the SIRD model, while the inverse problem is solved by combining the Levenberg–Marquardt method with Tikhonov regularization. A very good agreement was achieved between data and the calculated values. The resulting methodology is robust and very versatile, being easily applicable to other epidemiology models and data from other countries.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"1613 - 1628"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1872563","citationCount":"10","resultStr":"{\"title\":\"Function estimation and regularization in the SIRD model applied to the COVID-19 pandemics\",\"authors\":\"C. C. Pacheco, C. R. de Lacerda\",\"doi\":\"10.1080/17415977.2021.1872563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper deals with the quantification of the different rates in epidemiological models from a function estimation framework, with the objective of identifying the desired unknowns without defining a priori basis functions for describing its behaviour. This approach is used to analyze data for the Covid-19 pandemic in Italy and Brazil. The forward problem is written in terms of the SIRD model, while the inverse problem is solved by combining the Levenberg–Marquardt method with Tikhonov regularization. A very good agreement was achieved between data and the calculated values. The resulting methodology is robust and very versatile, being easily applicable to other epidemiology models and data from other countries.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"1613 - 1628\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2021.1872563\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1872563\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1872563","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

本文从函数估计框架处理流行病学模型中不同比率的量化,目的是在不定义描述其行为的先验基础函数的情况下识别所需的未知数。该方法用于分析意大利和巴西Covid-19大流行的数据。正问题用SIRD模型表示,逆问题用Levenberg-Marquardt方法和Tikhonov正则化相结合的方法求解。数据与计算值吻合得很好。由此产生的方法是稳健和非常通用的,很容易适用于其他流行病学模型和来自其他国家的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Function estimation and regularization in the SIRD model applied to the COVID-19 pandemics
ABSTRACT This paper deals with the quantification of the different rates in epidemiological models from a function estimation framework, with the objective of identifying the desired unknowns without defining a priori basis functions for describing its behaviour. This approach is used to analyze data for the Covid-19 pandemic in Italy and Brazil. The forward problem is written in terms of the SIRD model, while the inverse problem is solved by combining the Levenberg–Marquardt method with Tikhonov regularization. A very good agreement was achieved between data and the calculated values. The resulting methodology is robust and very versatile, being easily applicable to other epidemiology models and data from other countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems in Science and Engineering
Inverse Problems in Science and Engineering 工程技术-工程:综合
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome. Topics include: -Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks). -Material properties: determination of physical properties of media. -Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.). -Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.). -Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.
期刊最新文献
A New Approach to Analytical Modeling of Mars’s Magnetic Field Recovery of thermal load parameters by means of the Monte Carlo method with fixed and meshless random walks Solution of the Cauchy problem for the wave equation using iterative regularization A polarization tensor approximation for the Hessian in iterative solvers for non-linear inverse problems Influence of Doppler broadening model accuracy in Compton camera list-mode MLEM reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1