5 ' -磷酸吡哆醛与异烟肼合成的腙的构象行为

A. E. Pogonin, G. Gamov, M. Zavalishin, V. Sharnin
{"title":"5 ' -磷酸吡哆醛与异烟肼合成的腙的构象行为","authors":"A. E. Pogonin, G. Gamov, M. Zavalishin, V. Sharnin","doi":"10.6060/IVKKT.20186112.5846","DOIUrl":null,"url":null,"abstract":"The hydrazones derived from pyridoxal or pyridoxal 5’-phosphate and heterocyclic hydrazides are of interest due to their potential biological activity and metal sensing properties. These characteristics of hydrazones could be dependent on the conformation equilibria of molecule since the most stable conformer could differ from the one with the highest affinity towards biomolecule or metal ion. In the present contribution, deprotonated hydrazone formed by pyridoxal 5’-phosphate and isoniazid (PLP-INH3-) was studied by means of quantum chemistry. Three rotations leading to eight conformers are possible for this hydrazone; however, four of those species obtained by rotation of pyridine ring of isoniazid residue are degenerated. The geometry of different non-degenerated rotation conformers of the hydrazine (differing by the mutual arrangement of carbonyl group of the isoniazid residue and oxygen in 3’-site of PLP moiety) was optimized using density functional theory (B3LYP/6-311++G(d,p)). Activation barriers were evaluated. Changes in energy and geometry of conformers as well as transition states are discussed. Quantitative QTAIM (Quantum Theory of Atoms in Molecules) analysis was performed in order to check the intermolecular hydrogen bonding existence. The species capable of forming the complex with the metal ions differs from the most stable (according to the total energy values) conformer. The preliminary prediction of biological activity of PLP-INH3- hydrazone and the docking for the hydrazone and G-protein-coupled receptor kinase were performed and the preferable conformation for ligand binding to the kinase active site was found.","PeriodicalId":45993,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CONFORMATIONAL BEHAVIOR OF HYDRAZONE DERIVED FROM PYRIDOXAL 5’-PHOSPHATE AND ISONIAZID\",\"authors\":\"A. E. Pogonin, G. Gamov, M. Zavalishin, V. Sharnin\",\"doi\":\"10.6060/IVKKT.20186112.5846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydrazones derived from pyridoxal or pyridoxal 5’-phosphate and heterocyclic hydrazides are of interest due to their potential biological activity and metal sensing properties. These characteristics of hydrazones could be dependent on the conformation equilibria of molecule since the most stable conformer could differ from the one with the highest affinity towards biomolecule or metal ion. In the present contribution, deprotonated hydrazone formed by pyridoxal 5’-phosphate and isoniazid (PLP-INH3-) was studied by means of quantum chemistry. Three rotations leading to eight conformers are possible for this hydrazone; however, four of those species obtained by rotation of pyridine ring of isoniazid residue are degenerated. The geometry of different non-degenerated rotation conformers of the hydrazine (differing by the mutual arrangement of carbonyl group of the isoniazid residue and oxygen in 3’-site of PLP moiety) was optimized using density functional theory (B3LYP/6-311++G(d,p)). Activation barriers were evaluated. Changes in energy and geometry of conformers as well as transition states are discussed. Quantitative QTAIM (Quantum Theory of Atoms in Molecules) analysis was performed in order to check the intermolecular hydrogen bonding existence. The species capable of forming the complex with the metal ions differs from the most stable (according to the total energy values) conformer. The preliminary prediction of biological activity of PLP-INH3- hydrazone and the docking for the hydrazone and G-protein-coupled receptor kinase were performed and the preferable conformation for ligand binding to the kinase active site was found.\",\"PeriodicalId\":45993,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6060/IVKKT.20186112.5846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6060/IVKKT.20186112.5846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

吡哆醛或5 ' -磷酸吡哆醛衍生的腙类化合物和杂环肼类化合物因其潜在的生物活性和金属传感特性而受到广泛关注。腙的这些特性可能取决于分子的构象平衡,因为最稳定的构象可能不同于对生物分子或金属离子具有最高亲和力的构象。本文用量子化学方法研究了5′-磷酸吡哆醛与异烟肼(PLP-INH3-)形成的去质子化腙。该腙可以旋转三次得到八个构象;然而,由异烟肼残基吡啶环旋转得到的这些物质中有4个是退化的。利用密度泛函理论(B3LYP/6-311++G(d,p))优化了不同的肼非简并旋转构象(异烟肼残基羰基与PLP部分3′位氧的相互排列不同)的几何形状。对激活屏障进行了评估。讨论了构象的能量和几何形状以及过渡态的变化。为了验证分子间氢键的存在,进行了QTAIM (Quantum Theory of Atoms in Molecules)定量分析。能够与金属离子形成络合物的种类不同于最稳定的(根据总能量值)构象。对PLP-INH3-腙的生物活性进行了初步预测,并与g蛋白偶联受体激酶进行了对接,找到了配体结合激酶活性位点的较优构象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CONFORMATIONAL BEHAVIOR OF HYDRAZONE DERIVED FROM PYRIDOXAL 5’-PHOSPHATE AND ISONIAZID
The hydrazones derived from pyridoxal or pyridoxal 5’-phosphate and heterocyclic hydrazides are of interest due to their potential biological activity and metal sensing properties. These characteristics of hydrazones could be dependent on the conformation equilibria of molecule since the most stable conformer could differ from the one with the highest affinity towards biomolecule or metal ion. In the present contribution, deprotonated hydrazone formed by pyridoxal 5’-phosphate and isoniazid (PLP-INH3-) was studied by means of quantum chemistry. Three rotations leading to eight conformers are possible for this hydrazone; however, four of those species obtained by rotation of pyridine ring of isoniazid residue are degenerated. The geometry of different non-degenerated rotation conformers of the hydrazine (differing by the mutual arrangement of carbonyl group of the isoniazid residue and oxygen in 3’-site of PLP moiety) was optimized using density functional theory (B3LYP/6-311++G(d,p)). Activation barriers were evaluated. Changes in energy and geometry of conformers as well as transition states are discussed. Quantitative QTAIM (Quantum Theory of Atoms in Molecules) analysis was performed in order to check the intermolecular hydrogen bonding existence. The species capable of forming the complex with the metal ions differs from the most stable (according to the total energy values) conformer. The preliminary prediction of biological activity of PLP-INH3- hydrazone and the docking for the hydrazone and G-protein-coupled receptor kinase were performed and the preferable conformation for ligand binding to the kinase active site was found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
44.40%
发文量
83
期刊最新文献
Mathematical modeling of deformation and relaxation processes of polymer yarn Study of integration of software applications into design process The significance of VKHUTEMAS in the development of theatrical culture in Russia of XX-XXI centuries Method of measuring fibers’ friction bending resistance Study of physical and mechanical properties of knitted fabrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1