{"title":"用于CO2分离、N2O分离和H2S分离的纯ILs和DESs的筛选","authors":"Yin Zhang, Xuzhao Yang, Jingli Han, Junfeng Tian, Ting Zhang, Yakun Li, Jiangqiang Zhang, Yuxin Shi, Jingjing Zhang","doi":"10.1155/2023/8691957","DOIUrl":null,"url":null,"abstract":"Ionic liquids (ILs) are proposed as potential “green” solvents with remarkable properties. Deep eutectic solvents (DESs) are a new type of ILs with additional properties, such as higher biodegradability and a lower price. ILs and DESs are “green” absorbents for various gas separations, such as CO2/N2, CO2/H2/CO, H2S/CH4, and N2O/N2. Due to their large number, the screening of ILs is crucial. Although ILs with high absorption capacities were screened using gas solubility and selectivity, it is important to consider the energy and solvents used in the process. In this paper, the absorbent amount and the energy consumption were used for screening absorbents for various gas separation processes. The results reveal that physical IL [Bmim][DCA] and chemical IL [Eeim][Ac] are screened for CO2/N2 and CO2/H2/CO separation, physical IL [Omim][PF6] for H2S/CH4 separation, and physical IL [P66614][eFAP] for NO/N2 separation. The screened ILs offer some advantages over commercial absorbents in terms of lower energy consumption or amount.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of Pure ILs and DESs for CO2 Separation, N2O Separation, and H2S Separation Processes\",\"authors\":\"Yin Zhang, Xuzhao Yang, Jingli Han, Junfeng Tian, Ting Zhang, Yakun Li, Jiangqiang Zhang, Yuxin Shi, Jingjing Zhang\",\"doi\":\"10.1155/2023/8691957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionic liquids (ILs) are proposed as potential “green” solvents with remarkable properties. Deep eutectic solvents (DESs) are a new type of ILs with additional properties, such as higher biodegradability and a lower price. ILs and DESs are “green” absorbents for various gas separations, such as CO2/N2, CO2/H2/CO, H2S/CH4, and N2O/N2. Due to their large number, the screening of ILs is crucial. Although ILs with high absorption capacities were screened using gas solubility and selectivity, it is important to consider the energy and solvents used in the process. In this paper, the absorbent amount and the energy consumption were used for screening absorbents for various gas separation processes. The results reveal that physical IL [Bmim][DCA] and chemical IL [Eeim][Ac] are screened for CO2/N2 and CO2/H2/CO separation, physical IL [Omim][PF6] for H2S/CH4 separation, and physical IL [P66614][eFAP] for NO/N2 separation. The screened ILs offer some advantages over commercial absorbents in terms of lower energy consumption or amount.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8691957\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8691957","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Screening of Pure ILs and DESs for CO2 Separation, N2O Separation, and H2S Separation Processes
Ionic liquids (ILs) are proposed as potential “green” solvents with remarkable properties. Deep eutectic solvents (DESs) are a new type of ILs with additional properties, such as higher biodegradability and a lower price. ILs and DESs are “green” absorbents for various gas separations, such as CO2/N2, CO2/H2/CO, H2S/CH4, and N2O/N2. Due to their large number, the screening of ILs is crucial. Although ILs with high absorption capacities were screened using gas solubility and selectivity, it is important to consider the energy and solvents used in the process. In this paper, the absorbent amount and the energy consumption were used for screening absorbents for various gas separation processes. The results reveal that physical IL [Bmim][DCA] and chemical IL [Eeim][Ac] are screened for CO2/N2 and CO2/H2/CO separation, physical IL [Omim][PF6] for H2S/CH4 separation, and physical IL [P66614][eFAP] for NO/N2 separation. The screened ILs offer some advantages over commercial absorbents in terms of lower energy consumption or amount.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.