用于CO2分离、N2O分离和H2S分离的纯ILs和DESs的筛选

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL International Journal of Chemical Engineering Pub Date : 2023-02-18 DOI:10.1155/2023/8691957
Yin Zhang, Xuzhao Yang, Jingli Han, Junfeng Tian, Ting Zhang, Yakun Li, Jiangqiang Zhang, Yuxin Shi, Jingjing Zhang
{"title":"用于CO2分离、N2O分离和H2S分离的纯ILs和DESs的筛选","authors":"Yin Zhang, Xuzhao Yang, Jingli Han, Junfeng Tian, Ting Zhang, Yakun Li, Jiangqiang Zhang, Yuxin Shi, Jingjing Zhang","doi":"10.1155/2023/8691957","DOIUrl":null,"url":null,"abstract":"Ionic liquids (ILs) are proposed as potential “green” solvents with remarkable properties. Deep eutectic solvents (DESs) are a new type of ILs with additional properties, such as higher biodegradability and a lower price. ILs and DESs are “green” absorbents for various gas separations, such as CO2/N2, CO2/H2/CO, H2S/CH4, and N2O/N2. Due to their large number, the screening of ILs is crucial. Although ILs with high absorption capacities were screened using gas solubility and selectivity, it is important to consider the energy and solvents used in the process. In this paper, the absorbent amount and the energy consumption were used for screening absorbents for various gas separation processes. The results reveal that physical IL [Bmim][DCA] and chemical IL [Eeim][Ac] are screened for CO2/N2 and CO2/H2/CO separation, physical IL [Omim][PF6] for H2S/CH4 separation, and physical IL [P66614][eFAP] for NO/N2 separation. The screened ILs offer some advantages over commercial absorbents in terms of lower energy consumption or amount.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of Pure ILs and DESs for CO2 Separation, N2O Separation, and H2S Separation Processes\",\"authors\":\"Yin Zhang, Xuzhao Yang, Jingli Han, Junfeng Tian, Ting Zhang, Yakun Li, Jiangqiang Zhang, Yuxin Shi, Jingjing Zhang\",\"doi\":\"10.1155/2023/8691957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionic liquids (ILs) are proposed as potential “green” solvents with remarkable properties. Deep eutectic solvents (DESs) are a new type of ILs with additional properties, such as higher biodegradability and a lower price. ILs and DESs are “green” absorbents for various gas separations, such as CO2/N2, CO2/H2/CO, H2S/CH4, and N2O/N2. Due to their large number, the screening of ILs is crucial. Although ILs with high absorption capacities were screened using gas solubility and selectivity, it is important to consider the energy and solvents used in the process. In this paper, the absorbent amount and the energy consumption were used for screening absorbents for various gas separation processes. The results reveal that physical IL [Bmim][DCA] and chemical IL [Eeim][Ac] are screened for CO2/N2 and CO2/H2/CO separation, physical IL [Omim][PF6] for H2S/CH4 separation, and physical IL [P66614][eFAP] for NO/N2 separation. The screened ILs offer some advantages over commercial absorbents in terms of lower energy consumption or amount.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8691957\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8691957","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

离子液体因其优异的性能被认为是潜在的“绿色”溶剂。深共晶溶剂(DESs)是一种新型溶剂,具有较高的生物可降解性和较低的价格。ILs和DESs是各种气体分离的“绿色”吸附剂,如CO2/N2、CO2/H2/CO、H2S/CH4和N2O/N2。由于其数量众多,il的筛查至关重要。虽然通过气体溶解度和选择性来筛选具有高吸收能力的il,但重要的是要考虑过程中使用的能量和溶剂。本文以吸附剂用量和能耗为指标对不同气体分离工艺的吸附剂进行了筛选。结果表明:物理IL [Bmim][DCA]和化学IL [Eeim][Ac]分别用于CO2/N2和CO2/H2/CO分离,物理IL [Omim][PF6]用于H2S/CH4分离,物理IL [P66614][eFAP]用于NO/N2分离。筛选后的il与商用吸收剂相比,在能耗或用量方面具有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Screening of Pure ILs and DESs for CO2 Separation, N2O Separation, and H2S Separation Processes
Ionic liquids (ILs) are proposed as potential “green” solvents with remarkable properties. Deep eutectic solvents (DESs) are a new type of ILs with additional properties, such as higher biodegradability and a lower price. ILs and DESs are “green” absorbents for various gas separations, such as CO2/N2, CO2/H2/CO, H2S/CH4, and N2O/N2. Due to their large number, the screening of ILs is crucial. Although ILs with high absorption capacities were screened using gas solubility and selectivity, it is important to consider the energy and solvents used in the process. In this paper, the absorbent amount and the energy consumption were used for screening absorbents for various gas separation processes. The results reveal that physical IL [Bmim][DCA] and chemical IL [Eeim][Ac] are screened for CO2/N2 and CO2/H2/CO separation, physical IL [Omim][PF6] for H2S/CH4 separation, and physical IL [P66614][eFAP] for NO/N2 separation. The screened ILs offer some advantages over commercial absorbents in terms of lower energy consumption or amount.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Chemical Engineering
International Journal of Chemical Engineering Chemical Engineering-General Chemical Engineering
CiteScore
4.00
自引率
3.70%
发文量
95
审稿时长
14 weeks
期刊介绍: International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures. As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
A Review of Stochastic Optimization Algorithms Applied in Food Engineering Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit Effective Removal of Ibuprofen from Aqueous Solution Using Cationic Surface-Active Agents in Dissolved Air-Flotation Process Effect of inside Surface Baffle Conditions on Just Drawdown Impeller Rotational Speed A Study on the Valorization of Rice Straw into Different Value-Added Products and Biofuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1