完美反射平面边界的极坐标和柱坐标变量分离声学多重散射模型的成像条件

IF 0.8 4区 工程技术 Q3 MATHEMATICS, APPLIED Quarterly Journal of Mechanics and Applied Mathematics Pub Date : 2018-08-01 DOI:10.1093/QJMAM/HBY005
Ho-Chul Shin
{"title":"完美反射平面边界的极坐标和柱坐标变量分离声学多重散射模型的成像条件","authors":"Ho-Chul Shin","doi":"10.1093/QJMAM/HBY005","DOIUrl":null,"url":null,"abstract":"This article addresses efficient implementation of the method of images for acoustic multiple scattering models (MSM) with perfectly reflecting flat boundaries. Time-harmonic problems are first solved in the polar coordinate system for circular scatterers; then the models are extended to the cylindrical coordinate system with (semi-)infinitely long circular cylinders. The MSM in this article is based on the method of separation of variables and Graf’s addition theorem. Derivations are provided for ‘image conditions’ which relate the unknown coefficients of outgoing waves from image scatterers with those of real counterparts. The method of images is applied to wedge-shaped domains with apex angles of \nπ/n rad for a positive integer n. Image conditions make the MSM numerically more efficient: the system of linear equations for unknown coefficients is formulated 2n times faster; its memory requirements are reduced by 4n2 times for direct solvers. The proposed model is applied to a benchmark wedge in ocean environment with n=64. Good agreement is observed between the MSM with image conditions and the boundary element method. Furthermore, half- and quarter-space measurements in an anechoic chamber are in accordance with the correct use of image conditions. Incorrect image conditions reported elsewhere for polar coordinates are also discussed.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"71 1","pages":"273-296"},"PeriodicalIF":0.8000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QJMAM/HBY005","citationCount":"2","resultStr":"{\"title\":\"Image conditions for polar and cylindrical coordinate separation-of-variables acoustic multiple scattering models with perfectly reflecting flat boundaries\",\"authors\":\"Ho-Chul Shin\",\"doi\":\"10.1093/QJMAM/HBY005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses efficient implementation of the method of images for acoustic multiple scattering models (MSM) with perfectly reflecting flat boundaries. Time-harmonic problems are first solved in the polar coordinate system for circular scatterers; then the models are extended to the cylindrical coordinate system with (semi-)infinitely long circular cylinders. The MSM in this article is based on the method of separation of variables and Graf’s addition theorem. Derivations are provided for ‘image conditions’ which relate the unknown coefficients of outgoing waves from image scatterers with those of real counterparts. The method of images is applied to wedge-shaped domains with apex angles of \\nπ/n rad for a positive integer n. Image conditions make the MSM numerically more efficient: the system of linear equations for unknown coefficients is formulated 2n times faster; its memory requirements are reduced by 4n2 times for direct solvers. The proposed model is applied to a benchmark wedge in ocean environment with n=64. Good agreement is observed between the MSM with image conditions and the boundary element method. Furthermore, half- and quarter-space measurements in an anechoic chamber are in accordance with the correct use of image conditions. Incorrect image conditions reported elsewhere for polar coordinates are also discussed.\",\"PeriodicalId\":56087,\"journal\":{\"name\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"volume\":\"71 1\",\"pages\":\"273-296\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/QJMAM/HBY005\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/QJMAM/HBY005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/QJMAM/HBY005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了具有完美反射平面边界的声学多散射模型(MSM)的图像方法的有效实现。首先在圆散射体的极坐标系中求解时间谐波问题;然后将模型推广到具有(半)无限长圆柱的圆柱坐标系中。本文中的MSM是基于变量分离方法和格拉夫加法定理。推导了“图像条件”,该条件将来自图像散射体的出射波的未知系数与真实对应物的未知系数联系起来。图像方法应用于正整数n的顶角为π/n rad的楔形域。图像条件使MSM在数值上更有效:未知系数的线性方程组的公式化速度快2n倍;对于直接求解器,其存储器需求减少了4n2倍。将所提出的模型应用于n=64的海洋环境中的基准楔。在具有图像条件的MSM和边界元方法之间观察到良好的一致性。此外,消声室中的半空间和四分之一空间测量符合图像条件的正确使用。还讨论了其他地方报道的极坐标不正确的图像条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image conditions for polar and cylindrical coordinate separation-of-variables acoustic multiple scattering models with perfectly reflecting flat boundaries
This article addresses efficient implementation of the method of images for acoustic multiple scattering models (MSM) with perfectly reflecting flat boundaries. Time-harmonic problems are first solved in the polar coordinate system for circular scatterers; then the models are extended to the cylindrical coordinate system with (semi-)infinitely long circular cylinders. The MSM in this article is based on the method of separation of variables and Graf’s addition theorem. Derivations are provided for ‘image conditions’ which relate the unknown coefficients of outgoing waves from image scatterers with those of real counterparts. The method of images is applied to wedge-shaped domains with apex angles of π/n rad for a positive integer n. Image conditions make the MSM numerically more efficient: the system of linear equations for unknown coefficients is formulated 2n times faster; its memory requirements are reduced by 4n2 times for direct solvers. The proposed model is applied to a benchmark wedge in ocean environment with n=64. Good agreement is observed between the MSM with image conditions and the boundary element method. Furthermore, half- and quarter-space measurements in an anechoic chamber are in accordance with the correct use of image conditions. Incorrect image conditions reported elsewhere for polar coordinates are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.
期刊最新文献
Post-Buckling Solutions for the Gao Beam Harmonic And Neutral Spherical Elastic Inhomogeneities with A Functionally Graded Interphase Layer Theory of Perturbation of Electrostatic Field By A Coated Anisotropic Dielectric Sphere Homogenisation of Nonlinear Heterogeneous Thin Plate When the Plate Thickness and In-Plane Heterogeneities are of the Same Order of Magnitude Scattering by a Perforated Sandwich Panel: Method of Riemann Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1