不同土地利用类型下丛枝菌根真菌降低农牧交错带NH3排放

IF 5.2 2区 农林科学 Q1 SOIL SCIENCE Pedosphere Pub Date : 2024-04-01 DOI:10.1016/j.pedsph.2023.05.006
Huaisong WANG , Rui GUO , Yibo TIAN , Nan CUI , Xinxin WANG , Lei WANG , Zhongbao YANG , Shuying LI , Jixun GUO , Lianxuan SHI , Tao ZHANG
{"title":"不同土地利用类型下丛枝菌根真菌降低农牧交错带NH3排放","authors":"Huaisong WANG ,&nbsp;Rui GUO ,&nbsp;Yibo TIAN ,&nbsp;Nan CUI ,&nbsp;Xinxin WANG ,&nbsp;Lei WANG ,&nbsp;Zhongbao YANG ,&nbsp;Shuying LI ,&nbsp;Jixun GUO ,&nbsp;Lianxuan SHI ,&nbsp;Tao ZHANG","doi":"10.1016/j.pedsph.2023.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) emissions, the most important nitrogen (N) loss form, always induce a series of environmental problems such as increased frequency of regional haze pollution, accelerated N deposition, and N eutrophication. Arbuscular mycorrhizal (AM) fungi play key roles in N cycling. However, it is still unclear whether AM fungi can alleviate N losses by reducing NH<sub>3</sub> emissions. The potential mechanisms by which AM fungi reduce NH<sub>3</sub> emissions in five land-use types (grazed grassland, mowed grassland, fenced grassland, artificial alfalfa grassland, and cropland) were explored in this study. Results showed that AM fungal inoculation significantly reduced NH<sub>3</sub> emissions, and the mycorrhizal responses of NH<sub>3</sub> emissions were determined by land-use type. Structural equation modeling (SEM) showed that AM fungi and land-use type directly affected NH<sub>3</sub> emissions. In addition, the reduction in NH<sub>3</sub> emissions was largely driven by the decline in soil\n<span><math><mrow><msubsup><mrow><mtext>NH</mtext></mrow><mn>4</mn><mo>+</mo></msubsup></mrow></math></span>-N and pH and the increases in abundances of ammonia-oxidizing archaea (AOA) <em>amoA</em> and bacteria (AOB) <em>amoB</em> genes, urease activity, and plant N uptake induced by AM fungal inoculation and land-use type. The present results highlight that reducing the negative influence of agricultural intensification caused by land-use type changes on AM fungi should be considered to reduce N losses in agriculture and grassland ecosystems.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 2","pages":"Pages 497-507"},"PeriodicalIF":5.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbuscular mycorrhizal fungi reduce ammonia emissions under different land-use types in agro-pastoral areas\",\"authors\":\"Huaisong WANG ,&nbsp;Rui GUO ,&nbsp;Yibo TIAN ,&nbsp;Nan CUI ,&nbsp;Xinxin WANG ,&nbsp;Lei WANG ,&nbsp;Zhongbao YANG ,&nbsp;Shuying LI ,&nbsp;Jixun GUO ,&nbsp;Lianxuan SHI ,&nbsp;Tao ZHANG\",\"doi\":\"10.1016/j.pedsph.2023.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ammonia (NH<sub>3</sub>) emissions, the most important nitrogen (N) loss form, always induce a series of environmental problems such as increased frequency of regional haze pollution, accelerated N deposition, and N eutrophication. Arbuscular mycorrhizal (AM) fungi play key roles in N cycling. However, it is still unclear whether AM fungi can alleviate N losses by reducing NH<sub>3</sub> emissions. The potential mechanisms by which AM fungi reduce NH<sub>3</sub> emissions in five land-use types (grazed grassland, mowed grassland, fenced grassland, artificial alfalfa grassland, and cropland) were explored in this study. Results showed that AM fungal inoculation significantly reduced NH<sub>3</sub> emissions, and the mycorrhizal responses of NH<sub>3</sub> emissions were determined by land-use type. Structural equation modeling (SEM) showed that AM fungi and land-use type directly affected NH<sub>3</sub> emissions. In addition, the reduction in NH<sub>3</sub> emissions was largely driven by the decline in soil\\n<span><math><mrow><msubsup><mrow><mtext>NH</mtext></mrow><mn>4</mn><mo>+</mo></msubsup></mrow></math></span>-N and pH and the increases in abundances of ammonia-oxidizing archaea (AOA) <em>amoA</em> and bacteria (AOB) <em>amoB</em> genes, urease activity, and plant N uptake induced by AM fungal inoculation and land-use type. The present results highlight that reducing the negative influence of agricultural intensification caused by land-use type changes on AM fungi should be considered to reduce N losses in agriculture and grassland ecosystems.</p></div>\",\"PeriodicalId\":49709,\"journal\":{\"name\":\"Pedosphere\",\"volume\":\"34 2\",\"pages\":\"Pages 497-507\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedosphere\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002016023000553\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016023000553","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

氨(NH3)排放作为最重要的氮(N)损失形式,总是诱发一系列环境问题,如区域雾霾污染频率增加、氮沉积加速和氮富营养化。丛枝菌根(AM)真菌在氮循环中发挥着关键作用。然而,AM 真菌能否通过减少 NH3 排放来减轻氮的损失,目前还不清楚。本研究探讨了AM真菌在五种土地利用类型(放牧草地、割草草地、围栏草地、人工苜蓿草地和耕地)中减少NH3排放的潜在机制。结果表明,接种AM真菌能显著减少NH3的排放,而土地利用类型决定了菌根对NH3排放的响应。结构方程模型(SEM)表明,AM 真菌和土地利用类型直接影响 NH3 的排放。此外,氨氧化古细菌(AOA)amoA 和细菌(AOB)amoB 基因丰度、脲酶活性以及植物对氮的吸收量的增加在很大程度上推动了土壤 NH4+-N 和 pH 值的下降,而氨氧化古细菌接种和土地利用类型又诱导了 NH3 排放量的减少。本研究结果强调,应考虑减少土地利用类型变化导致的农业集约化对AM真菌的负面影响,以减少农业和草地生态系统中的氮损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arbuscular mycorrhizal fungi reduce ammonia emissions under different land-use types in agro-pastoral areas

Ammonia (NH3) emissions, the most important nitrogen (N) loss form, always induce a series of environmental problems such as increased frequency of regional haze pollution, accelerated N deposition, and N eutrophication. Arbuscular mycorrhizal (AM) fungi play key roles in N cycling. However, it is still unclear whether AM fungi can alleviate N losses by reducing NH3 emissions. The potential mechanisms by which AM fungi reduce NH3 emissions in five land-use types (grazed grassland, mowed grassland, fenced grassland, artificial alfalfa grassland, and cropland) were explored in this study. Results showed that AM fungal inoculation significantly reduced NH3 emissions, and the mycorrhizal responses of NH3 emissions were determined by land-use type. Structural equation modeling (SEM) showed that AM fungi and land-use type directly affected NH3 emissions. In addition, the reduction in NH3 emissions was largely driven by the decline in soil NH4+-N and pH and the increases in abundances of ammonia-oxidizing archaea (AOA) amoA and bacteria (AOB) amoB genes, urease activity, and plant N uptake induced by AM fungal inoculation and land-use type. The present results highlight that reducing the negative influence of agricultural intensification caused by land-use type changes on AM fungi should be considered to reduce N losses in agriculture and grassland ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pedosphere
Pedosphere 环境科学-土壤科学
CiteScore
11.70
自引率
1.80%
发文量
147
审稿时长
5.0 months
期刊介绍: PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.
期刊最新文献
Wheat morphological and biochemical responses to copper oxide nanoparticles in two soils Evaluating the necessity of autumn irrigation on salinized soil by considering changes in soil physicochemical properties Combining conservation tillage with nitrogen fertilization promotes maize straw decomposition by regulating soil microbial community and enzyme activities Global and regional soil organic carbon estimates: Magnitudes and uncertainties Cadmium found in peanut (Arachis hypogaea L.) kernels mainly originates from root uptake rather than shell absorption from soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1