聚合物熔体混合物剪切流动引发的自组织

IF 1 4区 化学 Q4 POLYMER SCIENCE Polymer Science, Series A Pub Date : 2023-07-03 DOI:10.1134/S0965545X23700670
I. V. Gumennyi, A. Ya. Malkin, V. G. Kulichikhin
{"title":"聚合物熔体混合物剪切流动引发的自组织","authors":"I. V. Gumennyi,&nbsp;A. Ya. Malkin,&nbsp;V. G. Kulichikhin","doi":"10.1134/S0965545X23700670","DOIUrl":null,"url":null,"abstract":"<p>Structure formation during deformation of a mixture of melts of a thermoplastic polymer (polysulfone) and a liquid crystal polymer has been investigated by means of analytical scanning electron microscopy. Viscosity of the LC polymer at high shear rate has been significantly lower in comparison with the thermoplastic. The experiment has been performed at controlled volume flow under conditions of flow through a capillary at a high and low deformation rate. The principal result of the observations has been the statement of self-organization effect manifested as the phase separation and formation of the regions with the increased concentration of the LC polymer in the thermoplastic matrix. Such system has been an emulsion, and a conical converging flow has been formed at the transition from the wide cylinder of the capillary viscometer to a narrow capillary installed at its bottom. Such geometry of deformation has led to the appearance of a longitudinal flow with the formation of jets (fibers) in the extrudate bulk and the surface layer of the liquid crystal polymer. Effective viscosity of the mixture has been lowered in comparison with this of the thermoplastic, due to self-assembly of the LC polymer.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"65 1","pages":"104 - 110"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Organization Initiated by Shear Flow of Mixtures of Polymer Melts\",\"authors\":\"I. V. Gumennyi,&nbsp;A. Ya. Malkin,&nbsp;V. G. Kulichikhin\",\"doi\":\"10.1134/S0965545X23700670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structure formation during deformation of a mixture of melts of a thermoplastic polymer (polysulfone) and a liquid crystal polymer has been investigated by means of analytical scanning electron microscopy. Viscosity of the LC polymer at high shear rate has been significantly lower in comparison with the thermoplastic. The experiment has been performed at controlled volume flow under conditions of flow through a capillary at a high and low deformation rate. The principal result of the observations has been the statement of self-organization effect manifested as the phase separation and formation of the regions with the increased concentration of the LC polymer in the thermoplastic matrix. Such system has been an emulsion, and a conical converging flow has been formed at the transition from the wide cylinder of the capillary viscometer to a narrow capillary installed at its bottom. Such geometry of deformation has led to the appearance of a longitudinal flow with the formation of jets (fibers) in the extrudate bulk and the surface layer of the liquid crystal polymer. Effective viscosity of the mixture has been lowered in comparison with this of the thermoplastic, due to self-assembly of the LC polymer.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"65 1\",\"pages\":\"104 - 110\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X23700670\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X23700670","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

用分析扫描电子显微镜研究了热塑性聚合物(聚砜)和液晶聚合物熔体混合物在变形过程中的结构形成。与热塑性塑料相比,高剪切速率下LC聚合物的粘度明显降低。实验在控制体积流条件下进行,分别在高变形率和低变形率下通过毛细管。观察的主要结果是自组织效应的陈述,表现为随着LC聚合物浓度的增加,热塑性基体中的相分离和区域形成。该体系为乳状液,在从毛细管粘度计的宽圆柱体到安装在其底部的窄毛细管的过渡过程中形成了锥形的收敛流。这种变形的几何形状导致纵向流动的出现,在挤出体和液晶聚合物的表层形成射流(纤维)。由于LC聚合物的自组装,混合物的有效粘度与热塑性塑料相比降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Organization Initiated by Shear Flow of Mixtures of Polymer Melts

Structure formation during deformation of a mixture of melts of a thermoplastic polymer (polysulfone) and a liquid crystal polymer has been investigated by means of analytical scanning electron microscopy. Viscosity of the LC polymer at high shear rate has been significantly lower in comparison with the thermoplastic. The experiment has been performed at controlled volume flow under conditions of flow through a capillary at a high and low deformation rate. The principal result of the observations has been the statement of self-organization effect manifested as the phase separation and formation of the regions with the increased concentration of the LC polymer in the thermoplastic matrix. Such system has been an emulsion, and a conical converging flow has been formed at the transition from the wide cylinder of the capillary viscometer to a narrow capillary installed at its bottom. Such geometry of deformation has led to the appearance of a longitudinal flow with the formation of jets (fibers) in the extrudate bulk and the surface layer of the liquid crystal polymer. Effective viscosity of the mixture has been lowered in comparison with this of the thermoplastic, due to self-assembly of the LC polymer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Science, Series A
Polymer Science, Series A 化学-高分子科学
CiteScore
1.70
自引率
0.00%
发文量
55
审稿时长
3 months
期刊介绍: Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.
期刊最新文献
Effect of Temperature as a Function of Magnetic Field and Frequency on the Magnetorheological Properties of the Smart Composite Elastomer Nucleation Density from Isotropic and Self-Nucleated Melts of Isotactic Polystyrene: An Overview from the Molten to a Glassy State Mobility of Multiply Protonated Poly(ethylene oxide)s in Helium at Different Electric Field Strengths. Molecular Dynamics Simulation of Ion Drift Development of a Nanocomposite Material Based on PCL/Zeolite-Supported Silver Nanoparticles for Active Food Packaging Synthesis, Rheological Properties, and Hemocompatibility of Alginic Acid Modified with Ethylenediamine Fragments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1