Md. Abdullah-Al-Mahbub, Abu Reza Md. Towfiqul Islam, E. Alam, Mahbuba Redowan Asha
{"title":"孟加拉湾海上客船的可持续太阳能潜力:减少二氧化碳排放和减少灾害风险的方法","authors":"Md. Abdullah-Al-Mahbub, Abu Reza Md. Towfiqul Islam, E. Alam, Mahbuba Redowan Asha","doi":"10.1177/01445987231173097","DOIUrl":null,"url":null,"abstract":"In Bangladesh, there are roughly 31 marine passenger ships that are in operation. These ships might be a good location for solar photovoltaic (PV) plants since solar energy is the best renewable energy to replace the fossil fuel used in the ships. A “tower rounded flower-shaped solar PV” system of PV panel arrangement—just looks like a “sunflower,” is proposed in this research. To harness maximum power, solar towers are designed in such a way that they may be freely rotated on their vertical axes and that the tilt angles of their solar panels can be adjusted from 0° to 50° on their horizontal axes freely. The “tower rounded flower-shaped solar PV” architecture of the PV array atop a maritime vessel is presented in this research along with a unique method for calculating the PV system's anticipated energy production. Finally calculated the realistic CO2 emission reduction by using this approach for a sustainable future. Applying globalsolaratlas (for horizon and sun's path estimation); PVsyst 7.2, HOMER Pro, and NREL's PVWatt calculator (for solar radiation calculation); vesselfinder (for the number of vessels analysis); shiptraffic (for vessels path analysis), this research suggests that marine passenger vessels are one of the best places to construct a proposed “tower rounded flower-shaped solar PV” power plant. According to estimates, 17 passenger ships can produce roughly 1240 MW of electricity per year and may save approximately 325.56 tons of CO2 gas emissions annually to the environment per year as compared to using fossil fuel-based power plants to produce electricity.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"41 1","pages":"1697 - 1723"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sustainable solar energy potential on marine passenger ships of Bay of Bengal: A way of reducing carbon dioxide emissions and disaster risk reduction\",\"authors\":\"Md. Abdullah-Al-Mahbub, Abu Reza Md. Towfiqul Islam, E. Alam, Mahbuba Redowan Asha\",\"doi\":\"10.1177/01445987231173097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Bangladesh, there are roughly 31 marine passenger ships that are in operation. These ships might be a good location for solar photovoltaic (PV) plants since solar energy is the best renewable energy to replace the fossil fuel used in the ships. A “tower rounded flower-shaped solar PV” system of PV panel arrangement—just looks like a “sunflower,” is proposed in this research. To harness maximum power, solar towers are designed in such a way that they may be freely rotated on their vertical axes and that the tilt angles of their solar panels can be adjusted from 0° to 50° on their horizontal axes freely. The “tower rounded flower-shaped solar PV” architecture of the PV array atop a maritime vessel is presented in this research along with a unique method for calculating the PV system's anticipated energy production. Finally calculated the realistic CO2 emission reduction by using this approach for a sustainable future. Applying globalsolaratlas (for horizon and sun's path estimation); PVsyst 7.2, HOMER Pro, and NREL's PVWatt calculator (for solar radiation calculation); vesselfinder (for the number of vessels analysis); shiptraffic (for vessels path analysis), this research suggests that marine passenger vessels are one of the best places to construct a proposed “tower rounded flower-shaped solar PV” power plant. According to estimates, 17 passenger ships can produce roughly 1240 MW of electricity per year and may save approximately 325.56 tons of CO2 gas emissions annually to the environment per year as compared to using fossil fuel-based power plants to produce electricity.\",\"PeriodicalId\":11606,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":\"41 1\",\"pages\":\"1697 - 1723\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987231173097\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01445987231173097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Sustainable solar energy potential on marine passenger ships of Bay of Bengal: A way of reducing carbon dioxide emissions and disaster risk reduction
In Bangladesh, there are roughly 31 marine passenger ships that are in operation. These ships might be a good location for solar photovoltaic (PV) plants since solar energy is the best renewable energy to replace the fossil fuel used in the ships. A “tower rounded flower-shaped solar PV” system of PV panel arrangement—just looks like a “sunflower,” is proposed in this research. To harness maximum power, solar towers are designed in such a way that they may be freely rotated on their vertical axes and that the tilt angles of their solar panels can be adjusted from 0° to 50° on their horizontal axes freely. The “tower rounded flower-shaped solar PV” architecture of the PV array atop a maritime vessel is presented in this research along with a unique method for calculating the PV system's anticipated energy production. Finally calculated the realistic CO2 emission reduction by using this approach for a sustainable future. Applying globalsolaratlas (for horizon and sun's path estimation); PVsyst 7.2, HOMER Pro, and NREL's PVWatt calculator (for solar radiation calculation); vesselfinder (for the number of vessels analysis); shiptraffic (for vessels path analysis), this research suggests that marine passenger vessels are one of the best places to construct a proposed “tower rounded flower-shaped solar PV” power plant. According to estimates, 17 passenger ships can produce roughly 1240 MW of electricity per year and may save approximately 325.56 tons of CO2 gas emissions annually to the environment per year as compared to using fossil fuel-based power plants to produce electricity.
期刊介绍:
Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.