L. Fu, W. Xia, Torbjörn Mellgren, M. Moge, H. Engqvist
{"title":"水热法制备高百分比α -半水合硫酸钙","authors":"L. Fu, W. Xia, Torbjörn Mellgren, M. Moge, H. Engqvist","doi":"10.4236/JBNB.2017.81003","DOIUrl":null,"url":null,"abstract":"α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"8 1","pages":"36-49"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Preparation of High Percentage α -Calcium Sulfate Hemihydrate via a Hydrothermal Method\",\"authors\":\"L. Fu, W. Xia, Torbjörn Mellgren, M. Moge, H. Engqvist\",\"doi\":\"10.4236/JBNB.2017.81003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.\",\"PeriodicalId\":68623,\"journal\":{\"name\":\"生物材料与纳米技术(英文)\",\"volume\":\"8 1\",\"pages\":\"36-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物材料与纳米技术(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JBNB.2017.81003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBNB.2017.81003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of High Percentage α -Calcium Sulfate Hemihydrate via a Hydrothermal Method
α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.