缓冲矢量误差修正模型:在美国国债利率中的应用

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2020-10-06 DOI:10.1515/snde-2019-0047
Renjie Lu, P. Yu
{"title":"缓冲矢量误差修正模型:在美国国债利率中的应用","authors":"Renjie Lu, P. Yu","doi":"10.1515/snde-2019-0047","DOIUrl":null,"url":null,"abstract":"Abstract This paper extends the buffered autoregressive model to the buffered vector error-correction model (VECM). Least squares estimation and a reduced-rank estimation are discussed, and the consistency of the estimators on the delay parameter and threshold parameters is derived. We also propose a supWald test for the presence of buffer-type threshold effect. Under the null hypothesis of no threshold, the supWald test statistic converges to a function of Gaussian process. A bootstrap method is proposed to obtain the p-value for the supWald test. We investigate the effectiveness of our methods by simulation studies. We apply our model to study the monthly Federal bond rates of United States. We find the evidences of buffering regimes and the asymmetric error-correction effect.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"25 1","pages":"267 - 287"},"PeriodicalIF":0.7000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/snde-2019-0047","citationCount":"0","resultStr":"{\"title\":\"Buffered vector error-correction models: an application to the U.S. Treasury bond rates\",\"authors\":\"Renjie Lu, P. Yu\",\"doi\":\"10.1515/snde-2019-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper extends the buffered autoregressive model to the buffered vector error-correction model (VECM). Least squares estimation and a reduced-rank estimation are discussed, and the consistency of the estimators on the delay parameter and threshold parameters is derived. We also propose a supWald test for the presence of buffer-type threshold effect. Under the null hypothesis of no threshold, the supWald test statistic converges to a function of Gaussian process. A bootstrap method is proposed to obtain the p-value for the supWald test. We investigate the effectiveness of our methods by simulation studies. We apply our model to study the monthly Federal bond rates of United States. We find the evidences of buffering regimes and the asymmetric error-correction effect.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"25 1\",\"pages\":\"267 - 287\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/snde-2019-0047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2019-0047\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2019-0047","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文将缓冲自回归模型扩展为缓冲矢量误差校正模型(VECM)。讨论了最小二乘估计和降阶估计,并推导了估计量在时延参数和阈值参数上的一致性。我们还提出了缓冲型阈值效应存在的supWald检验。在无阈值的零假设下,supWald检验统计量收敛为高斯过程的函数。提出了一种求supWald检验p值的自举法。我们通过仿真研究来验证我们方法的有效性。我们应用我们的模型来研究美国联邦债券的月利率。我们发现了缓冲机制和非对称纠错效应的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Buffered vector error-correction models: an application to the U.S. Treasury bond rates
Abstract This paper extends the buffered autoregressive model to the buffered vector error-correction model (VECM). Least squares estimation and a reduced-rank estimation are discussed, and the consistency of the estimators on the delay parameter and threshold parameters is derived. We also propose a supWald test for the presence of buffer-type threshold effect. Under the null hypothesis of no threshold, the supWald test statistic converges to a function of Gaussian process. A bootstrap method is proposed to obtain the p-value for the supWald test. We investigate the effectiveness of our methods by simulation studies. We apply our model to study the monthly Federal bond rates of United States. We find the evidences of buffering regimes and the asymmetric error-correction effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1