利用多知识库和离线回答广度改进系统提高机器理解能力

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Internet Technology Pub Date : 2021-09-01 DOI:10.53106/160792642021092205013
Feifei Xu, Wenkai Zhang, Haizhou Du, Shanlin Zhou
{"title":"利用多知识库和离线回答广度改进系统提高机器理解能力","authors":"Feifei Xu, Wenkai Zhang, Haizhou Du, Shanlin Zhou","doi":"10.53106/160792642021092205013","DOIUrl":null,"url":null,"abstract":"Machine Reading Comprehension (MRC) is a challenging but meaningful task in natural language processing (NLP) that requires us to teach a machine to read and understand a given passage and answer questions related to that passage. In this paper, we present a rich knowledge-enhanced reader (RKE-Reader), a hierarchical MRC model that employs double knowledge bases with an NER system as its knowledge enhancement unit. Besides, we are the first to propose an offline answer-imporving method to help model to determine the uncertain answer without extra online training process. Our experimental results indicate that on most datasets, the RKE-Reader significantly outperforms most of the published models that do not have knowledge base, especially on datasets that need commonsense reasoning. And the ablation study also reflects that external knowledge bases and answer-selecting unit do make a positive contribution in the entire model.","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"22 1","pages":"1093-1105"},"PeriodicalIF":0.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Machine Comprehension Using Multi-Knowledge Bases and Offline Answer Span Improving System\",\"authors\":\"Feifei Xu, Wenkai Zhang, Haizhou Du, Shanlin Zhou\",\"doi\":\"10.53106/160792642021092205013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Reading Comprehension (MRC) is a challenging but meaningful task in natural language processing (NLP) that requires us to teach a machine to read and understand a given passage and answer questions related to that passage. In this paper, we present a rich knowledge-enhanced reader (RKE-Reader), a hierarchical MRC model that employs double knowledge bases with an NER system as its knowledge enhancement unit. Besides, we are the first to propose an offline answer-imporving method to help model to determine the uncertain answer without extra online training process. Our experimental results indicate that on most datasets, the RKE-Reader significantly outperforms most of the published models that do not have knowledge base, especially on datasets that need commonsense reasoning. And the ablation study also reflects that external knowledge bases and answer-selecting unit do make a positive contribution in the entire model.\",\"PeriodicalId\":50172,\"journal\":{\"name\":\"Journal of Internet Technology\",\"volume\":\"22 1\",\"pages\":\"1093-1105\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642021092205013\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.53106/160792642021092205013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

机器阅读理解(MRC)是自然语言处理(NLP)中一项具有挑战性但有意义的任务,它要求我们教机器阅读和理解给定的文章,并回答与该文章相关的问题。在本文中,我们提出了一种丰富知识增强的阅读器(RKE-reader),这是一种分层MRC模型,它采用双知识库,以NER系统为其知识增强单元。此外,我们还首次提出了一种离线答案改进方法,以帮助模型在没有额外在线训练过程的情况下确定不确定答案。我们的实验结果表明,在大多数数据集上,RKE Reader显著优于大多数没有知识库的已发表模型,尤其是在需要常识推理的数据集上。消融研究也反映出外部知识库和答案选择单元在整个模型中确实做出了积极的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Machine Comprehension Using Multi-Knowledge Bases and Offline Answer Span Improving System
Machine Reading Comprehension (MRC) is a challenging but meaningful task in natural language processing (NLP) that requires us to teach a machine to read and understand a given passage and answer questions related to that passage. In this paper, we present a rich knowledge-enhanced reader (RKE-Reader), a hierarchical MRC model that employs double knowledge bases with an NER system as its knowledge enhancement unit. Besides, we are the first to propose an offline answer-imporving method to help model to determine the uncertain answer without extra online training process. Our experimental results indicate that on most datasets, the RKE-Reader significantly outperforms most of the published models that do not have knowledge base, especially on datasets that need commonsense reasoning. And the ablation study also reflects that external knowledge bases and answer-selecting unit do make a positive contribution in the entire model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Technology
Journal of Internet Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
3.20
自引率
18.80%
发文量
112
审稿时长
13.8 months
期刊介绍: The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere. Topics of interest to JIT include but not limited to: Broadband Networks Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business) Network Management Network Operating System (NOS) Intelligent systems engineering Government or Staff Jobs Computerization National Information Policy Multimedia systems Network Behavior Modeling Wireless/Satellite Communication Digital Library Distance Learning Internet/WWW Applications Telecommunication Networks Security in Networks and Systems Cloud Computing Internet of Things (IoT) IPv6 related topics are especially welcome.
期刊最新文献
Abnormal Detection Method of Transship Based on Marine Target Spatio-Temporal Data Multidimensional Concept Map Representation of the Learning Objects Ontology Model for Personalized Learning Multiscale Convolutional Attention-based Residual Network Expression Recognition A Dynamic Access Control Scheme with Conditional Anonymity in Socio-Meteorological Observation A Behaviorally Evidence-based Method for Computing Spatial Comparisons of Image Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1