Todd A. Murphy, Tessa M. Stetzer, Lauren Walker, T. Fricker, Brad Bryant, C. Woodrum
{"title":"2020年4月12日路易斯安那州北部龙卷风QLCS分析","authors":"Todd A. Murphy, Tessa M. Stetzer, Lauren Walker, T. Fricker, Brad Bryant, C. Woodrum","doi":"10.15191/nwajom.2022.1004","DOIUrl":null,"url":null,"abstract":"On 12 April 2020, a tornadic quasi-linear convective system (QLCS) produced two EF-3 tornadoes in Ouachita Parish, Louisiana in close proximity to instrumentation operated by the University of Louisiana Monroe’s (ULM) Atmospheric Science program. In addition to the in situ environmental information, a high-resolution aerial damage survey was conducted by the ULM Unmanned Aerial Systems program. In this paper, these datasets are used to provide a comprehensive environmental and storm-scale analysis of the tornadic QLCS through northern Louisiana. In addition, we discuss the importance of aerial damage surveys, and how Doppler radar-derived tornado intensity estimates compared to the damage survey.","PeriodicalId":44039,"journal":{"name":"Journal of Operational Meteorology","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the 12 April 2020 Northern Louisiana Tornadic QLCS\",\"authors\":\"Todd A. Murphy, Tessa M. Stetzer, Lauren Walker, T. Fricker, Brad Bryant, C. Woodrum\",\"doi\":\"10.15191/nwajom.2022.1004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On 12 April 2020, a tornadic quasi-linear convective system (QLCS) produced two EF-3 tornadoes in Ouachita Parish, Louisiana in close proximity to instrumentation operated by the University of Louisiana Monroe’s (ULM) Atmospheric Science program. In addition to the in situ environmental information, a high-resolution aerial damage survey was conducted by the ULM Unmanned Aerial Systems program. In this paper, these datasets are used to provide a comprehensive environmental and storm-scale analysis of the tornadic QLCS through northern Louisiana. In addition, we discuss the importance of aerial damage surveys, and how Doppler radar-derived tornado intensity estimates compared to the damage survey.\",\"PeriodicalId\":44039,\"journal\":{\"name\":\"Journal of Operational Meteorology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15191/nwajom.2022.1004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15191/nwajom.2022.1004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Analysis of the 12 April 2020 Northern Louisiana Tornadic QLCS
On 12 April 2020, a tornadic quasi-linear convective system (QLCS) produced two EF-3 tornadoes in Ouachita Parish, Louisiana in close proximity to instrumentation operated by the University of Louisiana Monroe’s (ULM) Atmospheric Science program. In addition to the in situ environmental information, a high-resolution aerial damage survey was conducted by the ULM Unmanned Aerial Systems program. In this paper, these datasets are used to provide a comprehensive environmental and storm-scale analysis of the tornadic QLCS through northern Louisiana. In addition, we discuss the importance of aerial damage surveys, and how Doppler radar-derived tornado intensity estimates compared to the damage survey.