船舶机舱模块布置的优化

IF 0.5 4区 工程技术 Q4 ENGINEERING, MARINE Journal of Ship Production and Design Pub Date : 2021-02-17 DOI:10.5957/JSPD.12190066
G. Gunawan, A. Utomo, K. Hamada, Kazetaro Ouchi, Hiroyuki Yamamoto, Sueshige Yoichi
{"title":"船舶机舱模块布置的优化","authors":"G. Gunawan, A. Utomo, K. Hamada, Kazetaro Ouchi, Hiroyuki Yamamoto, Sueshige Yoichi","doi":"10.5957/JSPD.12190066","DOIUrl":null,"url":null,"abstract":"This article presents a new approach for engine room design based on the modularization concept including the part arrangement optimization. The characteristics of the proposed methods are as follows. First, attention was paid to piping systems of multiple bulk carrier series of different sizes. The cost and length of the piping system as well as the similarity and the commonness of the modules and arrangements were considered. Second, to define an effective module that could be commonly used in different ships, a design structure matrix was adopted. Third, in the arrangement design, an optimization system was developed using a genetic algorithm to obtain a similar pattern for module arrangement in multiple series ships with specific consideration toward cost and similarity. Some examples using the proposed method are shown at the end of article.","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":"37 1","pages":"54-66"},"PeriodicalIF":0.5000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Module Arrangement in Ship Engine Room\",\"authors\":\"G. Gunawan, A. Utomo, K. Hamada, Kazetaro Ouchi, Hiroyuki Yamamoto, Sueshige Yoichi\",\"doi\":\"10.5957/JSPD.12190066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a new approach for engine room design based on the modularization concept including the part arrangement optimization. The characteristics of the proposed methods are as follows. First, attention was paid to piping systems of multiple bulk carrier series of different sizes. The cost and length of the piping system as well as the similarity and the commonness of the modules and arrangements were considered. Second, to define an effective module that could be commonly used in different ships, a design structure matrix was adopted. Third, in the arrangement design, an optimization system was developed using a genetic algorithm to obtain a similar pattern for module arrangement in multiple series ships with specific consideration toward cost and similarity. Some examples using the proposed method are shown at the end of article.\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\"37 1\",\"pages\":\"54-66\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JSPD.12190066\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JSPD.12190066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于模块化思想的机舱设计新方法,包括部件布置优化。所提出的方法的特点如下。首先,对不同尺寸的多系列散货船的管道系统进行了研究。考虑了管道系统的成本和长度,以及模块和布置的相似性和共性。其次,采用设计结构矩阵,定义可在不同船舶上通用的有效模块。第三,在布置设计中,利用遗传算法开发了优化系统,在考虑成本和相似度的情况下,获得多系列船舶模块布置的相似模式。文章最后给出了一些应用该方法的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Module Arrangement in Ship Engine Room
This article presents a new approach for engine room design based on the modularization concept including the part arrangement optimization. The characteristics of the proposed methods are as follows. First, attention was paid to piping systems of multiple bulk carrier series of different sizes. The cost and length of the piping system as well as the similarity and the commonness of the modules and arrangements were considered. Second, to define an effective module that could be commonly used in different ships, a design structure matrix was adopted. Third, in the arrangement design, an optimization system was developed using a genetic algorithm to obtain a similar pattern for module arrangement in multiple series ships with specific consideration toward cost and similarity. Some examples using the proposed method are shown at the end of article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.
期刊最新文献
The Evaluation of Propeller Boss Cap Fins Effects for Different Pitches and Positions in Open Water Conditions Modeling Shipboard Power Systems for Endurance and Annual Fuel Calculations Derivation of Optimum Outfit Density for Surface Warships based on the Analysis of Variations in Work Content and Workforce Density and Productivity with Ship Size Utilizing Artificial Intelligence and Knowledge-Based Engineering Techniques in Shipbuilding: Practical Insights and Viability Practice Design of Ship Thin Section Considering Prevention of Welding-Induced Buckling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1