J. Moeslund, K. K. Clausen, L. Dalby, Camilla Fløjgaard, M. Pärtel, N. Pfeifer, M. Hollaus, Ane Kirstine Brunbjerg
{"title":"利用机载激光雷达表征北欧陆地高暗多样性栖息地","authors":"J. Moeslund, K. K. Clausen, L. Dalby, Camilla Fløjgaard, M. Pärtel, N. Pfeifer, M. Hollaus, Ane Kirstine Brunbjerg","doi":"10.1002/rse2.314","DOIUrl":null,"url":null,"abstract":"A key aspect of nature conservation is knowledge of which aspects of nature to conserve or restore to favor the characteristic diversity of plants in a given area. Here, we used a large plant dataset with >40 000 plots combined with airborne laser scanning (lidar) data to reveal the local characteristics of habitats having a high plant dark diversity—that is, absence of suitable species—at national extent (>43 000 km2). Such habitats have potential for reaching high realized diversity levels and hence are important in a conservation context. We calculated 10 different lidar based metrics (both terrain and vegetation structure) and combined these with seven different field‐based measures (soil chemistry and species indicators). We then used Integrated Nested Laplace Approximation for modelling plant dark diversity across 33 North European habitat types (open landscapes and forests) selected by the European communities to be important. In open habitat types high‐dark‐diversity habitats had relatively low pH, high nitrogen content, tall homogenous vegetation, and overall relatively homogenous terrains (high terrain openness) although with a rather high degree of local microtopographical variations. High‐dark‐diversity habitats in forests had relatively tall vegetation, few natural‐forest indicators, low potential solar radiation input and a low cover of small woody plants. Our results highlight important vegetation, terrain‐ and soil‐related factors that managers and policymakers should be aware of in conservation and restoration projects to ensure a natural plant diversity, for example low nutrient loads, natural microtopography and possibly also open forests with old‐growth elements such as dead wood and rot attacks.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using airborne lidar to characterize North European terrestrial high‐dark‐diversity habitats\",\"authors\":\"J. Moeslund, K. K. Clausen, L. Dalby, Camilla Fløjgaard, M. Pärtel, N. Pfeifer, M. Hollaus, Ane Kirstine Brunbjerg\",\"doi\":\"10.1002/rse2.314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key aspect of nature conservation is knowledge of which aspects of nature to conserve or restore to favor the characteristic diversity of plants in a given area. Here, we used a large plant dataset with >40 000 plots combined with airborne laser scanning (lidar) data to reveal the local characteristics of habitats having a high plant dark diversity—that is, absence of suitable species—at national extent (>43 000 km2). Such habitats have potential for reaching high realized diversity levels and hence are important in a conservation context. We calculated 10 different lidar based metrics (both terrain and vegetation structure) and combined these with seven different field‐based measures (soil chemistry and species indicators). We then used Integrated Nested Laplace Approximation for modelling plant dark diversity across 33 North European habitat types (open landscapes and forests) selected by the European communities to be important. In open habitat types high‐dark‐diversity habitats had relatively low pH, high nitrogen content, tall homogenous vegetation, and overall relatively homogenous terrains (high terrain openness) although with a rather high degree of local microtopographical variations. High‐dark‐diversity habitats in forests had relatively tall vegetation, few natural‐forest indicators, low potential solar radiation input and a low cover of small woody plants. Our results highlight important vegetation, terrain‐ and soil‐related factors that managers and policymakers should be aware of in conservation and restoration projects to ensure a natural plant diversity, for example low nutrient loads, natural microtopography and possibly also open forests with old‐growth elements such as dead wood and rot attacks.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.314\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.314","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Using airborne lidar to characterize North European terrestrial high‐dark‐diversity habitats
A key aspect of nature conservation is knowledge of which aspects of nature to conserve or restore to favor the characteristic diversity of plants in a given area. Here, we used a large plant dataset with >40 000 plots combined with airborne laser scanning (lidar) data to reveal the local characteristics of habitats having a high plant dark diversity—that is, absence of suitable species—at national extent (>43 000 km2). Such habitats have potential for reaching high realized diversity levels and hence are important in a conservation context. We calculated 10 different lidar based metrics (both terrain and vegetation structure) and combined these with seven different field‐based measures (soil chemistry and species indicators). We then used Integrated Nested Laplace Approximation for modelling plant dark diversity across 33 North European habitat types (open landscapes and forests) selected by the European communities to be important. In open habitat types high‐dark‐diversity habitats had relatively low pH, high nitrogen content, tall homogenous vegetation, and overall relatively homogenous terrains (high terrain openness) although with a rather high degree of local microtopographical variations. High‐dark‐diversity habitats in forests had relatively tall vegetation, few natural‐forest indicators, low potential solar radiation input and a low cover of small woody plants. Our results highlight important vegetation, terrain‐ and soil‐related factors that managers and policymakers should be aware of in conservation and restoration projects to ensure a natural plant diversity, for example low nutrient loads, natural microtopography and possibly also open forests with old‐growth elements such as dead wood and rot attacks.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.