{"title":"喷雾同步燃烧器的直接数值模拟:液体溶剂的影响","authors":"A. Abdelsamie, H. Wiggers, F. Kruis, D. Thévenin","doi":"10.1177/17568277231187471","DOIUrl":null,"url":null,"abstract":"The SpraySyn burner is a new system recently developed at the University of Duisburg-Essen to investigate experimentally nanoparticle synthesis in spray flames for a variety of materials. The current project aims at performing direct numerical simulations with detailed physicochemical models of configurations closely related to this burner. The effect of using different solvents to produce titanium-dioxide (TiO[Formula: see text]) nanoparticles is discussed in this work. The two solvents considered are o-xylene and ethanol mixed in liquid state with tetraisopropoxide to form TiO[Formula: see text]. The liquid is injected into a pilot flame as dispersed spray with a carrier flow (dispersion gas). The resulting particle size distribution is examined as well. It is in particular observed that using ethanol leads to faster agglomeration and larger nanoparticles. This effect is qualitatively similar to that found when injecting smaller liquid spray droplets.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct numerical simulation of SpraySyn burner: Impact of liquid solvent\",\"authors\":\"A. Abdelsamie, H. Wiggers, F. Kruis, D. Thévenin\",\"doi\":\"10.1177/17568277231187471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SpraySyn burner is a new system recently developed at the University of Duisburg-Essen to investigate experimentally nanoparticle synthesis in spray flames for a variety of materials. The current project aims at performing direct numerical simulations with detailed physicochemical models of configurations closely related to this burner. The effect of using different solvents to produce titanium-dioxide (TiO[Formula: see text]) nanoparticles is discussed in this work. The two solvents considered are o-xylene and ethanol mixed in liquid state with tetraisopropoxide to form TiO[Formula: see text]. The liquid is injected into a pilot flame as dispersed spray with a carrier flow (dispersion gas). The resulting particle size distribution is examined as well. It is in particular observed that using ethanol leads to faster agglomeration and larger nanoparticles. This effect is qualitatively similar to that found when injecting smaller liquid spray droplets.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568277231187471\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277231187471","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct numerical simulation of SpraySyn burner: Impact of liquid solvent
The SpraySyn burner is a new system recently developed at the University of Duisburg-Essen to investigate experimentally nanoparticle synthesis in spray flames for a variety of materials. The current project aims at performing direct numerical simulations with detailed physicochemical models of configurations closely related to this burner. The effect of using different solvents to produce titanium-dioxide (TiO[Formula: see text]) nanoparticles is discussed in this work. The two solvents considered are o-xylene and ethanol mixed in liquid state with tetraisopropoxide to form TiO[Formula: see text]. The liquid is injected into a pilot flame as dispersed spray with a carrier flow (dispersion gas). The resulting particle size distribution is examined as well. It is in particular observed that using ethanol leads to faster agglomeration and larger nanoparticles. This effect is qualitatively similar to that found when injecting smaller liquid spray droplets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.