新工业时代背景下改进的智能优化物流路径规划模型设计

IF 4 Q2 ENGINEERING, INDUSTRIAL Journal of Industrial and Production Engineering Pub Date : 2023-08-29 DOI:10.1080/21681015.2023.2251485
Dan Li, Tianlong Chai
{"title":"新工业时代背景下改进的智能优化物流路径规划模型设计","authors":"Dan Li, Tianlong Chai","doi":"10.1080/21681015.2023.2251485","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the context of the new industrial era, intelligent manufacturing, intelligent factories, and intelligent logistics have become hot topics during the industrial revolution. In order to meet the flexibility, flexibility, and efficiency of factory logistics in the era of Industry 4.0, and improve the punctuality of logistics distribution, a factory logistics path planning model is designed based on grid environment and Ant colony optimization algorithms. The algorithm optimizes and improves the search ability and adaptability of Ant colony optimization algorithms. The test results show that the Pheromone volatile number is 0.3, which is a moderate value. When the importance of Pheromone is 3 and the heuristic factor is 6, the average optimal cost and the average number of iterations are the minimum. As the variable increases, both evaluation indicators show a trend of decreasing first and then increasing. The improvement of the initial Pheromone can speed up the Rate of convergence of the algorithm, while the quality of the planned path results is better than that of the traditional planned path, and the shortest path length is reduced from 26.46 to 24.38. The path smoothed by B-spline curve is smooth and continuous. The algorithm proposed by the research institute converges quickly, with the shortest path value being 59.43, and the maximum reduction in path length reaching 18.44%. The optimized path length converges quickly after fluctuations, and the algorithm has strong adaptability to the environment. This model can achieve accurate logistics path planning, provide competitive solutions for the implementation of intelligent logistics in factories, and promote the 4.0 factory to build a truly intelligent factory. Graphical abstract ACO was first used to solve the Traveling Salesman Problem (TSP). Assuming there are cities on the plane, defined as, the connection between cities constitutes a combination, and the cost measure of the connection between cities is expressed as. The core of TSPE is to find the path back to the starting point after traveling through all city nodes, while ensuring the lowest cost measurement.","PeriodicalId":16024,"journal":{"name":"Journal of Industrial and Production Engineering","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an improved intelligent optimization logistics path planning model for the background of the new industrial era\",\"authors\":\"Dan Li, Tianlong Chai\",\"doi\":\"10.1080/21681015.2023.2251485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the context of the new industrial era, intelligent manufacturing, intelligent factories, and intelligent logistics have become hot topics during the industrial revolution. In order to meet the flexibility, flexibility, and efficiency of factory logistics in the era of Industry 4.0, and improve the punctuality of logistics distribution, a factory logistics path planning model is designed based on grid environment and Ant colony optimization algorithms. The algorithm optimizes and improves the search ability and adaptability of Ant colony optimization algorithms. The test results show that the Pheromone volatile number is 0.3, which is a moderate value. When the importance of Pheromone is 3 and the heuristic factor is 6, the average optimal cost and the average number of iterations are the minimum. As the variable increases, both evaluation indicators show a trend of decreasing first and then increasing. The improvement of the initial Pheromone can speed up the Rate of convergence of the algorithm, while the quality of the planned path results is better than that of the traditional planned path, and the shortest path length is reduced from 26.46 to 24.38. The path smoothed by B-spline curve is smooth and continuous. The algorithm proposed by the research institute converges quickly, with the shortest path value being 59.43, and the maximum reduction in path length reaching 18.44%. The optimized path length converges quickly after fluctuations, and the algorithm has strong adaptability to the environment. This model can achieve accurate logistics path planning, provide competitive solutions for the implementation of intelligent logistics in factories, and promote the 4.0 factory to build a truly intelligent factory. Graphical abstract ACO was first used to solve the Traveling Salesman Problem (TSP). Assuming there are cities on the plane, defined as, the connection between cities constitutes a combination, and the cost measure of the connection between cities is expressed as. The core of TSPE is to find the path back to the starting point after traveling through all city nodes, while ensuring the lowest cost measurement.\",\"PeriodicalId\":16024,\"journal\":{\"name\":\"Journal of Industrial and Production Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Production Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21681015.2023.2251485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681015.2023.2251485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of an improved intelligent optimization logistics path planning model for the background of the new industrial era
ABSTRACT In the context of the new industrial era, intelligent manufacturing, intelligent factories, and intelligent logistics have become hot topics during the industrial revolution. In order to meet the flexibility, flexibility, and efficiency of factory logistics in the era of Industry 4.0, and improve the punctuality of logistics distribution, a factory logistics path planning model is designed based on grid environment and Ant colony optimization algorithms. The algorithm optimizes and improves the search ability and adaptability of Ant colony optimization algorithms. The test results show that the Pheromone volatile number is 0.3, which is a moderate value. When the importance of Pheromone is 3 and the heuristic factor is 6, the average optimal cost and the average number of iterations are the minimum. As the variable increases, both evaluation indicators show a trend of decreasing first and then increasing. The improvement of the initial Pheromone can speed up the Rate of convergence of the algorithm, while the quality of the planned path results is better than that of the traditional planned path, and the shortest path length is reduced from 26.46 to 24.38. The path smoothed by B-spline curve is smooth and continuous. The algorithm proposed by the research institute converges quickly, with the shortest path value being 59.43, and the maximum reduction in path length reaching 18.44%. The optimized path length converges quickly after fluctuations, and the algorithm has strong adaptability to the environment. This model can achieve accurate logistics path planning, provide competitive solutions for the implementation of intelligent logistics in factories, and promote the 4.0 factory to build a truly intelligent factory. Graphical abstract ACO was first used to solve the Traveling Salesman Problem (TSP). Assuming there are cities on the plane, defined as, the connection between cities constitutes a combination, and the cost measure of the connection between cities is expressed as. The core of TSPE is to find the path back to the starting point after traveling through all city nodes, while ensuring the lowest cost measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
21
期刊最新文献
Workshop layout optimization method based on sparrow search algorithm: a new approach On the power and robustness of phase I nonparametric Shewhart-type charts using sequential normal scores Sustainable planning and design for eco-industrial parks using integrated multi-objective optimization and fuzzy analytic hierarchy process Analysis of the BP neural network comprehensive competitiveness evaluation model for the development evaluation of B2B E-commerce enterprises Financial management early warning model of enterprise circular economy based on chaotic particle swarm optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1